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Abstract

Ahlswede and Frankl independently found a result about the structure of set
systems with few disjoint pairs. Bollobas and Leader gave an alternate proof
by generalizing to fractional set systems and noting that the optimal fractional
set systems are {0, 1}-valued. In this paper we show that this technique does
not extend to t-intersecting families. We find optimal fractional set systems for
some infinite classes of parameters, and we point out that they are strictly bet-
ter than the corresponding {0, 1}-valued fractional set systems. We prove some
results about the structure of an optimal fractional set system, which we use to
produce an algorithm for finding such systems. The run-time of the algorithm

is polynomial in the size of the ground set.

Keywords: Intersecting Family; Fractional Set System; Extremal Problem; Hyper-
graph

1. Introduction

Mathematicians have long been interested in intersecting set systems. A
collection of sets S is intersecting if every pair of sets in the collection has
non-empty intersection. Suppose that every element of S is a subset of [n] =
{1,2,...,n}. In that case we say that S is a family on the ground set [n]. It is
well-known and easy to show that an intersecting family on the ground set [n]
has at most 2"~ ! elements.

A family S is ¢ - intersecting if |A N B| > t for each pair of sets A,B € S.

The maximum size of a t-intersecting family is given by a theorem of Katona
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[1]. Denote this maximum by M (n,t). That is,
M(n,t) = max{|A| cAcC2A As t—intesecting} ,

where 2["l = {§ : S C [n]} is the powerset of [n]. Katona’s result is the follow-
ing.

Theorem 1 (Katona). The largest t-intersecting family on [n] consists of all

of the sets of size at least w and some of size %H More precisely,
M(nt) = (Z%t), if (n + t) is even,
Y=Y 2 oneia), if (no+ 1) is odd,
Z 7 3

where .
n n
()=2()

In addition to t-intersecting families, it is also natural to consider ¢t-intersecting
hypergraphs. That is, given fixed n,r € N, we ask for the largest ¢-intersecting
subset of ([:f]) (the size r subsets of [n]). The t = 1 case is settled by the the
well-known Erdés-Ko-Rado Theorem [2]. Erdés, Ko, and Rado also establish
the solution for ¢ > 1 and n large enough. The complete answer was settled by
Ahlswede and Khachatrian [3].

A natural next question is: given (large) s € N, how close to t-intersecting
can a family of size s be? More precisely, given A C 2["!| define D;(A) to be the
number of pairs (4, B) € A x A so that |[AN B| < t. Given s € N, we wish to
minimize D;(A) over all systems with |A| = s. Call this minimum D, ;(s). The
theorem of Katona given above establishes the values of s for which D,, ;(s) = 0.

Frankl [4] and Ahlswede [5] independently determined the answer for partic-
ular values of s when ¢t = 1. Essentially, the optimal family has as many large
sets as possible. Given n,r € N, denote ([;’7],) ={ACn]: |A| >r}. Such a

family is a discrete Hamming ball. We have the following.

Theorem 2 (Frankl,Ahlswede). There is an optimal set system between discrete
adjacent Hamming balls. More precisely: given B C 21" let v be such that
(s0)) < IBI < (). Then there is A C 21" with |A] = |B|, (L)) ¢ Ac (1)



An immediate corollary of this theorem is that if s = (), then Dy(s) =
Dl(([;‘i)) Bollobds and Leader [6] give another proof of this corollary (but not
of the theorem) by generalizing to fractional set systems and noting that the
optimal fractional set systems are {0, 1}-valued.

One would like to apply this technique for general t. However, the theorem
of Bollobéds and Leader is false for ¢ > 1. In section 4 we give some (simple)
counter examples. The question of determining the D; minimizing fractional
set systems is still open. We give some results about the structure of an optimal
fractional set system. We provide an algorithm, polynomial in the size of the

ground set, to determine this fractional set system.

2. The Theorem of Bollobas and Leader
Given n € N, we define a fractional set system on [n] to be a map
f:20 =0, 1].

The {0, 1}—valued fractional systems correspond to classical set systems. We
denote the set of all fractional set systems on 2" by F,,. If f € F,,, we define
its weight, W(f), by
W)=Y f).
1

Ae2ln
Given r, s € R, define

r@®s=max{0,a+b—1}.

One might think of 7 @ s is the volume of liquid that spills out of a test tube of
volume 1 if liquids of volume 7 and s are added to it. Given ¢t € N, we define
D)= Y fAefDB).
(A,B)e2l x 2l
|[ANB|<t
Notice that this definition of D; extends the previous definition. Given a fixed

weight w > 0, we want to find

Dn,t(w) = lnf{Dt(f) : f S ]:naW(f) = w}



To apply induction, it is useful to count the number of disjoint pairs between
two (often different) fractional set systems. Given n,t € N and f,g € F,, we
define

Di(f,9)= >,  f(AegB).

(4,B)e2[ x2l"]
|[ANB|<t

Given v, w € R, define
Dn,t(v7w) = lnf{Dt(fvg) : fvg c fnvw(f) = UvW(g) = ’LU} .

Notice in particular that D:(f) = D:(f, f).
Given a fixed weight w with 0 < w < 27, there is exactly one f € F, of

weight w for which there exists k € [0,n] and « € [0, 1] such that

L Al >k
fA) =4 a, |A=k;
0, |Al<Ek.

Following Bollobas and Leader, we call this the Hamming ball of weight w on
2[71and denote it by bY.
Bollobas and Leader proved the following theorem.

Theorem 3 (Bollobds and Leader [6]). When t = 1 the optimal fractional set
system is a Hamming ball. That is, for n € N and v,w € R,

Dy 1(v,w) = Dy(b}, ;).

n»-n

Is this theorem true for ¢ > 17 We given a very small counter example to
establish that it is not.

Example 4. Let ¢ > 1 and consider D1,(1,1). Let f € F1 be given by f({1})
5 and f(0) = .5. We have that Dy(f, f) = 0. On the other hand, D;(b},b}) =
Similarly, for any positive integers n,t with 2 < t < n,D,, (2"~ 2771) =
but Dy(b2" 2" ") > 0.

—_

==}

)

It is not the case that there are only counter examples for relatively low
weights. To see this, we first establish some general facts about D; minimizing
fractional set systems, and then use these to give a large class of counter exam-
ples, and finally to produce an efficient algorithm to “graph” D,, ,(w) for given

n and t.



3. Optimal Fractional Set Systems

Let 0 < w < 2™. By a compactness argument, there is f € F,, with W(f) =
w and D, (w) = D,(f). We now prove some facts about the structure of
optimal fractional set systems.

We call a fractional set system f € F,, constant on layers if for all A, B € 2[",
|A| = |B| implies f(A) = f(B). We may turn any fractional set system into
one which is constant on layers; given f € F,,, we define the smear operation
o:Fn— Fn by )

=) T s
Be({1)

Lemma 5. Given fractional set systems f,g € Fp, Di(c(f),0(g)) < D(f,g).

Thus for any weight, there is a D;-minimizing fractional set system that is
constant on layers. To prove lemma 5, we establish a more general fact that
relies on the convexity of Dy, which we now prove.

Lemma 6. The function D; is convex. That is, given n,t € N, f1,91, fo,92 €
Fn and X € [0,1], we have

DiAf12 1) + (1= N)(far92)) < AD:(F1, 91) + (1 = N Dy far g3).

Proof. Notice that the function h(z) = max{0,1 — z} is convex. This justifies
the only inequality below.

DiA(f101) + (1= N)(f2, 92))
=S A+ (1= N fa(4) @ (Ag1(A) + (1= A)ga(4))

(A,B)e2l x 2l
|[ANB|<t

= Yo AR +91(B) = 1) + (1= N (f2(A) + g2(B) — 1)

(A,B)e2[™ x 2l
|[ANB|<t

< > AR (f1(A) + g1(B) — 1)

(A,B)e2™ x 2l
|ANB|<t

+ > (A= Nh((f2(A) +92(B) - 1)

(A,B)e2M x 2l
|[ANB|<t

= ADi(f1,91) + (1 = N Dy(f2, 92)



Define the graph G,,; to be the bipartite graph each of whose partite sets is
a copy of 2[", and where AB is an edge if |AN B| < t. Let P be a partition of
the vertices of Gy, +. Given v € G+, let P, be the part that contains v. A pair
(f,9) € Fn x Fy, is naturally a vertex weighting (f,¢) : V(Gp) — R. Define
op(f,g) to be the the pair (f',¢") € F, x F,, given by

(1,9)®) = 57 P | U; (1,9)

In other words, op averages the parts of P. In particular, if A is a group of
automorphisms of G,, ;, we define 04 = 0o, where O is the set of orbits of A.

Lemma 7. Let n,t € N and let A be a group of automorphisms of Gy, .. Then
gien f,g € Fp,
Dt(O-A<fvg)> < Dt(fvg)

Proof. Since A acts on V(G,,,;), there is a natural action of A on F,, x F,,; given
¢ € Aand (f,g9) € Fn x Fn, we define ¢(f,g) to be the function in F,, x F,

given by
o(f,9)(v) = (f,9) (¢~ (v)).
Notice that
Di(o(f,9)) = Di(f,9)

1.9 M|Z¢f,

peA

and

and so by the convexity of D; and Jensen’s inequality,

Diloa(f:9)) < 11 ,4| > Di(o(f,9)) = Di(f,9).

peA

We may use this fact to easily establish lemma 5.

Proof of lemma 5. Let ¢ € S, be a permutation of [n]. Notice that ¢ induces a
graph automorphism on G,,;: a vertex A C [n] in a part of Gy, is sent to the
copy of ¢(A) in the same part. Two vertices v,w € Gy, are in the same orbit
of S, if and only if |v] = |w| and v and w are in the same partite set. Clearly
then 0 = 0 4, and so the claim follows by Lemma 7. O

Notice that in G,, 4, every set A € ([gl) is connected to every other set (in

the opposite part). Thus the set of maps that permute these vertices (without



changing partitions) and fix all other vertices is a group of automorphisms of

Gnt. By applying Lemma 7 we then have the following fact.

Lemma 8. Given n € N, t € [0,n], and u,w € R, with 0 < u,w < 2" there
are f,g € o(Fy,) with W(f) = u, and W(g) = w such that D,, ;(u, w) = D.(f, g)
and for all A, B € (")), f(A) = f(B) and g(A) = g(B). O

We call such a fractional set system constant below t. From now on we may
assume without loss of generality that a D;-minimizing function f is constant
on layers and constant below t. We call such a fractional set system t-constant,
and denote the set of ¢-constant fractional set systems of weight w on 2" by

Ky Given f € K}, and i € [0,n] we may define

n,t’

where A is any set in ([?]). For all j,k < t, we have f; = fi. We will denote
this common weight by f<;.

Given n,t € N, and w € R, with 0 < w < 2™, we would like there to exist
an f € K, such that D,, ;(w,w) = Dy(f, f). This would imply D,, +(w,w) =
D,, ;(w). The following lemma establishes this.

f+g f+g

Lemma 9. Given n,t € N and f,g € F,, D, ( 5 5

) < Dy(f.9).

Proof. Notice that the function ¢ : G, + — G, that switches the two parts is
a graph automorphism. Further, A = {1, ¢} is a group and applying Lemma 7
gives the desired result. O
We call a function f € F, nondecreasing if for all A, B € 2[" with |A| < |B|
we have f(A) < f(B). (Notice that if f is nondecreasing then it is constant on
layers.) We have the following lemma.
Lemma 10. Given n € N and v,w € R, there are nondecreasing set systems
f,g € F, with W(f)=wv and W(g) = w such that D,, ;(v,w) = Di(f,g).
To aid in the proof we introduce some notation. Given n,t € N, A € 2",

and j € [0,n], the number of j-sets of [n] that are ¢-disjoint from A is

Anit(A,§) = A(A, j) = HB c CT) . |AN B <t}‘.



Notice that as a function of A, A,, ;(4, ) only depends on |A|. In particular, if

|A| = 4, we define

A(i,j) = A(A, j) = Zi (fz) (:_CD

=0

Proof of Lemma 10. Let n,t € N and v,w € R. Let f € K}, ; and g € ), have
D,, i(v,w) = Dy(f,g). We may assume (by another compactness argument) that
5(f,9) = 2oi_gi(fi + gi) is maximized over all pairs (f,g) € K}, , x K, that
satisfy Di(f,9) = Dy (v, w). We want to show that f and g are nondecreasing.
Suppose by way of contradiction that there are integers 0 < i < j < n such that
fi > f; (the case g; > g; is the same). We will shift some weight from 7 to j
obtaining f’ with s(f’, g) > s(f,g) and yet D;(f’, g) < D:(f,g), a contradiction.
To that end, choose AW > 0 small enough that for all £ € [0,n] for which

fi+ fr <1, we have f; + fi + (?)_1AW < 1. The quantity AW should also be
small enough that f; — (") AW > f; + () AW. Finally, it should be the

J

case that f; — (?)71AW >0 and f; + (’;)%AW < 1. Define f' € F,, by

fA), AL i)
fA) =S fi+() AW [A] =
L= () 7AW A=

Notice that W(f") = W(f), and that s(f’,g) = s(f,g) + (j — {)AW. Further
notice that

Di(f.9) = Di(f',9') = Y. A egB) - (A egB)
Ae(),Be2l]
|[ANB|<t
+ Y [fA)egB) - (A eebB)

Ae(M),Be2l]
|ANB|<t

(Y r@Wess) - fA)@eB)
k=0 " ae(t).me()

|[ANB|<t
> AW eeB) - f(MegB))

ae (), e (')
|ANB|<t

Fix k € [0,n]. We show that the corresponding term in the last sum is non-
negative. We have two cases: either f; + fr <lor f;+ fro > 1. If f; + fi <1
then by our choice of AW, we have fj/ + fr < 1. Thus for all A € ([;L]) and

Be (M), f(A) @ g(B) =0 and f'(A) ® g(B) = 0. For A€ (") and B € (1)),



f(A) @ g(B) — f'(A) @ g(B) is always nonnegative, so the case f; + fr < 1is
settled.

If fj + fi > 1, then f; + fi. > 1, fi + fi, > 1, and f] + fi > 1 by the choice
of AW. Thus

Y. U@ euB) - f(A)oeB)

Ae(),Be()

|ANB|<t
1
= > (fj“‘gk—l)_(fj‘f'(@) AW+91«—1)]
Ae () pe() ’
|ANB|<t
-1
() o
— _A(, AW
Similarly,

Yo [f(A)eyB) - f'(A) @ g(B)] = Ali, k) AW

ae().Be()
|ANB|<t

Notice that because j > i, there are more k sets that have small intersection
with a given ¢ set than there are k sets that have small intersection with a given
j set. In other words, A(j,k) < A(i, k). Hence the term corresponding to k in
the sum above is nonnegative. O

We say a set system [ € K7, is t-canonical if f is nondecreasing. We denote

the set of t-canonical fractional set systems of weight w by C,

4. More Counter Examples

In this section we give some more counter examples to the t > 1 case of
the theorem of Bollobds and Leader, and we find the minimizing fractional set
system when ¢ > {%]

Example 11. Let n,t € N, t <n. For w € R with

(Znt>+1/2(tn1> <w<2"-1/2

We have Dy(b¥) > Dy, 1(w).



Proof. Let A=1{1,2,..., t — 1}. By our choice of w, b¥(A) > 1/2. Let Aw >0
be less than b (A) —1/2 and less than 1/2—bY(0). Consider f € F,, defined by

bw((l)) +Aw i B=0
F(B)={b¥(A)—Aw ifB=A
b (B) if B¢ {A,0}.

Since A and () are t-disjoint from everything, we have that

(b3 (A) @ by (B) + byy (0) @ by (B)]
Be2ln\{0,A}
-2 > [f(Aef(B)+ ) e f(B)
Be2[nI\{0,A}
+ by (A) @ by (A) + by (0) @ byy (0)
—fA) @ f(A) - ) & f(0)
=2 Y[R @by (B) - f(A) @ f(B))]

Be2[n\{0,A}
+2 Y (R @by(B) ~ f(0) © f(B))]
Be2[n\{§,A}
+ (0 (A) + b, (A) = 1) = (f(A) + f(A) = 1)
=2 ) (R @b (B) — f(A) @ f(B))]

Be2ln\{0,A}

+2 > [br0) @by (B) - f() & £(B))]
Be2nI\{0,A}

+ 2Aw

Notice that b¥(A) @ b¥(B) — f(A) @ f(B) > 0, and furthermore, if b¥(() &
b¥(B) — f(0) ® f(B) <0, then f(0) + f(B) > 1, so f(B) > 1/2 and thus since
b¥(B) = f(B), we have

(b, (A) © 0;(B) = f(A) @ f(B)) + (b, (0) © b (B) — f() & f(B))
= (f(A) +Aw+ f(B) = 1) = (f(A) + f(B) = 1)
+(f0) —Aw) s f(B) = (f(0) + f(B) - 1)
> Aw
+(f0) = Aw+ f(B) = 1) = (f0) + £(B) - 1)
=0
Thus D;(bY) — D¢(f) > 2Aw > 0 as desired. O

10



Given n,t € N, and a fixed weight w with 27! < w < 27, there is exactly

one f € Cy, of the form

Lo [Al>k
f(A)=9 a |Al =k
1/2, |A| <k.

where k € [t — 1,n] and @ € R with 1/2 < o < 1. We call this the ¢-half-ball

[n]

. For w < 2"~ the system with constant weight f(A) = 2%

will also be called a t-half-ball. We denote the ¢-half-ball of weight w on 2[" by

w
hy -

of weight w on 2

Theorem 12. Let n,t € N with t > {Q—‘, and let w € R with 0 < w < 2™,
Then among the optimal fractional set systems is the t-half-ball. That is,

Dn,t(’UJ) = Dt(hw )

n,t

Proof. If w < 2"~', then hY, is the constant fractional set system with total
weight w. This constant value is no more than 1/2, so Dy(hY) = 0 = D,, +(w)
as desired. Thus we assume that w > 2771

Now let f € CyY, with D,, +(w) = D¢(f). We may assume (by a compactness
argument) that f.; is as large as possible. We claim that fo; > 1/2. Notice
that in these circumstances,

Di(f)y= > fA+fB) -1,

(A,B)e2l x2ln]
|ANB|<t

and thus we want to keep weight in the sets that occur least often in the sum.
That is, we want as much weight as possible in large sets while maintaining
the property that the weight on every set is at least 1/2. Of course, A, does
exactly that, and so D,, ;(w) = Dy(f) > Di(hy,), and the theorem is proved.

Suppose for < 1/2. Let [ = min{j € [0,n] : f; > 1/2}. (Notice that
{j €0,n] : f; >1/2} is nonempty since w > 2"~1). Choose Aw > 0 small
enough so that f;_; + (<£1)_1Aw <fi— (;‘l)_lAw and fi—1 + ( )_1Aw <
1/2. Define g € C¥, by -

B E O I T ¢
9= fot () TAw ifi<l.

n
<l-1

We show that for any (i,7) € [0,n] x [0,n], g; ® g; < fi ® f;. For (4,5) €
(l,n] x [l,n], we have g; < f; and g; < f;. Thus g, ® g; < f; @ f;. For
(i,7) € [l,n] x[0,1—1], we have g;+g; = fi— (;l)_lAuH—fﬂ— (Sl"_l)_lAw. But

11



I>t>[n/2],so (;ll) < (<£1) and hence g; +g; < fi+ f;,80 ;B g; < fi ® f;.
Similarly, for (4, §) € [0,1—1]x[0,n], g;®g; < fi® f;. If (i,5) € [0,1—1]x[0,1-1],
then by our choice of Aw, g; and g; are both no more than 1/2, and so g;+g; < 1,
and g; ®g; =0 < f; ® f;.

Now we easily have

Dilg) = > . (?)Ai,j (9: ® g5)

s > <n>/\w‘ (fi® f;)

i

= Di(f
But by our choice of Aw, g € C}/; and furthermore g<; > f<;. This is a
contradiction. Hence fo; > 1/2, and the theorem follows. O

Corollary 13. Ifn > 1, t > [g-‘, and (L&J) < w < 2™ —1/2 then the
2

Hamming ball is not optimal. That is,
Dt(bﬁ) > Dnyt(w).

Proof. If w > (Z,) +1/2(,",) then we are done by Example 11. Suppose then

that w < () +1/2(,",). Let f € F, be non-decreasing and constant on

layers. Notice that if f;—1 < 1/2, and D¢(f) > 0, then the shift in the proof
above strictly decreases D;. We now show that D;(b¥) > 0. Let

e a2 )
pefon |22 1)

|ANB| < V;tJ —1-(n— V;tJ F1)+1

<t-1.

and

Then

But [A| = || — 1, and |B| = |2f%], and since w > (LJ’%J), b (A) > 0 and

b¥(B) = 1. Hence b¥(A) ® b¥(B) > 0 and so Dy(b¥) > 0. But w < () +

1/2(tf1) < (gt) + 1/2(<£1). Thus smearing b below t yields f, a set system
with the property that fo; < 1/2, and D;(f) < D;(b¥). If Di(f) < Ds(b?) we
are done. Otherwise D;(f) = D:(b) > 0. Applying the shift above, we strictly

decrease Dy, establishing the result. O

12



5. An Algorithmic Solution

Given n,t € N and w € R with 0 < w < 2", we say f € F, is a pseudo-ball
if all of its values are 0, 1/2, or 1. Notice that the number of pseudo-balls in

C, is finite. We have the following theorem, which we prove later.

Theorem 14. D, :(w) is the mazimum convex function below the points

{(W(f),Dns(f)) = f is a pseudo-ball}

In particular, D,, ;(w) is piecewise linear, and the points where the slope
changes correspond to pseudo-balls. Thus we may “graph” D, ;(w) as follows:
compute Dy for each of the pseudo-balls, and then use a convex hull algorithm to
find D,, ;(w). There are (”_;+4) pseudo-balls in C¥,, and it takes O(n?) time to
compute D; of a given pseudo-ball. This yields an O(n?*) run time to compute
D; for every pseudo-ball. We apply the convex hull algorithm to the O(n?)
pseudo-balls. This takes O(n*) time, and so overall this process completes in
O(n*) time.

Lemma 15. Given n,t € N and 0 < w < 2", there is f € C), with Dy 4(w) =
Dy(f) and with (f;){—o having the form

(F)rg = (0,...0,1—6,...,1—5,1/2,...,1/2,6,...,5,1,...,1)
N—— —— —

lo lis li/2 ls 1

Where 1/2 <6 <1, and lo,l1—s,l1/2,15,11 € [0,n + 1] are integers that sum to
n+ 1.

Proof of Lemma 15. We will see that the space C};’; can be divided into finitely
many parts, Pi,..., P,, defined by linear inequalities, in such a way that D,
is an affine function on each part. Thus, on each part, minimizing D; is a
linear programming problem. Recall that if a (minimizing) solution to a linear
programming problem exists, then there is a solution at a vertex of the feasible
region of the problem. We will see that for all i, every vertex in P; is of the
form claimed in the lemma. Since the D; minimizing f must appear in one of
the parts, the lemma is established.

First, we may think of a fractional set system f € C}’; as a function in
R{t=L-n} This function is subject to the following linear constraints. (Recall
that we use fo; to denote the common weight on the sets of size less than ¢.

13



This is identical to fi—1.)

W(f) = w (1)
0 < f«u (2)

fi < fiqpforallie[t—1,n—1] (3)

fn <01 (4)

Let R C [t—1,n] x [t —1,n]. Then we define Pr to be the set of f € C, subject
to additional constraints

fitfi > 1if(,j)€R (5)
fitf; < 1if(i,j) ¢ R (6)
Notice that given f € C},, every pair (i,5) € [t—1,n] x [t —1,n] has fi+ f; <1

or fi+ f; > 1, and so f is in some Pr. More importantly, if we set

o (A, ) ifi>t:
) s MG k) fi=t -1,

<t

then for all f € Pg,

Dy(f) = Z cii(fi+ fi—1).

(.j)ER

Thus D, is affine on each Pr. Fix R. We are now ready to find the vertices
of Pr. We may think of the coefficients on a constraint as a vector in R?~*+2,
For example, the constraint f; < f;y1 is equivalent to f; — f;11 < 0 and so it
corresponds to a vector of the form

(0,...,0,1,-1,0,...,0).

Similarly, the constraint f; 4+ f; > 1 becomes a vector with ones in positions 4
and j, and 0’s elsewhere. Since we are thinking of C/, as an n—t+2 dimensional
space, a fractional set system is a vertex if it achieves equality for n—t+2 linearly
independent constraints. Notice that equality always holds for constraint (1),
and so we want equality to hold for n — ¢ 4+ 1 linearly independent constraints
of types (2)-(6). Let f € Pg be a vertex of Pr. Given ¢ € [1/2,1], define

Ss={iet—1,n]: fi=dor fi=1-0}.

Define Cj to be the set of coefficient vectors for the constraints of types (2)-(6)
that f exactly meets, and where for some i € Ss, the i*" entry is nonzero. Let
C' be the set of vectors corresponding to all constraints for which f achieves
equality. By our choice of f, we have rank C = n — ¢ 4+ 2. On the other hand,
if «J is the vector corresponding to the weight constraint, then

c={wtu |J G

sel1/2,1]

14



and so
rank C <1+ Z rank Cs.
se1/2,1]
Notice that this sum is finite, since f only takes on finitely many values. Notice
further that the only nonzero coefficients in a constraint in C5 are on f; with
fi=dor fi =1 —46. Thus rank Cs < |Ss5|. Counsider § not equal to 1/2 or 1.
Given v € [0,1], denote f~'(v) = {i € [t —1,n] : fi =v}. Let p € RIt-1tn}
be the vector that is 1 on f~1(d), —1 on f~1(1 — §), and 0 everywhere else.
Notice that no vector in Cj corresponds to constraints (2) or (4), and so in
particular for all ¥ € Cy, we have ¥ - p = 0. Thus when we restrict our vectors
to S5 (the support of Cy), the dimension of the space perpendicular to Cs is at
least 1. This implies that
rank Cs < |S5| — 1

Thus if d is the number of distinct nonempty S5 other than 57 and Sy /o, we
have

n—t+2=rank C

<1+ Z rank Cy
s€(1/2,1]

<l—-d+ Z |Ss]
s€[1/2,1]
=1—-d4+n—t+2

By canceling terms and rearranging, d < 1, and the claim is proved. O

Proof of Theorem 14. First we see that D, ; is convex: let w; and wy have
0 < w < wy < 2" Then for i = 1 or 2, there exists f; € C:ft such that
Dy, ((w;) = Dy(f;). Let A € [0,1]. Then

Dy (Awr + (1 — XNwe)
<Dy(AM1+(1=A)f2)
< ADi(f1) + (1 = A)Di(f2)
= AD, (w1) + (1 — X) Dy (w2)

Next we see that Dy, ; is piecewise linear. Let lg, l15, l1/2, 5, I1 be nonneg-
ative integers that sum to n + 1. Also, let § € [1/2,1]. Define

f5:(0,...0,176,...,176,1/2,...,1/2,5,...,5,1,...,1)
—— —_—— ——
lo lis li/2 ls Iy

Notice that the weight of f5 is affine in 0, as is D, +(f5). Thus the graph of
{(W(fs),De(fs)) : 0 € [1/2,1]} is a line segment. By Lemma 15, D), +(w) is the

15



minimum value among all the line segments of this type that are defined at w.
Thus D,, ; is piecewise linear.

Changes of slope occur at the end of the line segments described above or
at the intersection of two of them. As it turns out, slope does not change at
an intersection of two of these line segments if the intersection is not also an
endpoint for one of the line segments. This is true because otherwise near the
point of intersection, Dy, + would be the minimum of two line segments, which is
not a convex function. Thus the slope of D, ; changes at endpoints of the line
segments described above. But the endpoints occur where W( f5) is maximized
or minimized. These extrema occur when § = 1/2 and § = 1. In either case, fs
is pseudo-ball. O

6. Conclusion

In summary, this paper shows that the specific proof technique (via fractional
set systems) used in [6] to establish the minimum number of disjoint pairs in
a set system does not transfer to the problem of minimizing the number of ¢-
disjoint pairs when ¢t > 2. We provide some insight into the structure of extremal
fractional set systems. The problems of determining extremal set systems and

extremal fractional set systems are still open.
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