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Abstract

Ahlswede and Frankl independently found a result about the structure of set

systems with few disjoint pairs. Bollobás and Leader gave an alternate proof

by generalizing to fractional set systems and noting that the optimal fractional

set systems are {0, 1}-valued. In this paper we show that this technique does

not extend to t-intersecting families. We find optimal fractional set systems for

some infinite classes of parameters, and we point out that they are strictly bet-

ter than the corresponding {0, 1}-valued fractional set systems. We prove some

results about the structure of an optimal fractional set system, which we use to

produce an algorithm for finding such systems. The run-time of the algorithm

is polynomial in the size of the ground set.

Keywords: Intersecting Family; Fractional Set System; Extremal Problem; Hyper-
graph

1. Introduction

Mathematicians have long been interested in intersecting set systems. A

collection of sets S is intersecting if every pair of sets in the collection has

non-empty intersection. Suppose that every element of S is a subset of [n] =

{1, 2, . . . , n}. In that case we say that S is a family on the ground set [n]. It is

well-known and easy to show that an intersecting family on the ground set [n]

has at most 2n−1 elements.

A family S is t - intersecting if |A ∩ B| ≥ t for each pair of sets A,B ∈ S.

The maximum size of a t-intersecting family is given by a theorem of Katona
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[1]. Denote this maximum by M(n, t). That is,

M(n, t) = max
{
|A| : A ⊆ 2[n], A is t-intesecting

}
,

where 2[n] = {S : S ⊆ [n]} is the powerset of [n]. Katona’s result is the follow-

ing.

Theorem 1 (Katona). The largest t-intersecting family on [n] consists of all
of the sets of size at least (n+t)

2 and some of size n+t−1
2 . More precisely,

M(n, t) =

{ (
n

≥n+t
2

)
, if (n + t) is even;

2
( n−1
≥n+t−1

2

)
, if (n + t) is odd,

where (
n

≥ r

)
=

n∑
i=r

(
n

i

)
.

In addition to t-intersecting families, it is also natural to consider t-intersecting

hypergraphs. That is, given fixed n, r ∈ N, we ask for the largest t-intersecting

subset of
(
[n]
r

)
(the size r subsets of [n]). The t = 1 case is settled by the the

well-known Erdős-Ko-Rado Theorem [2]. Erdős, Ko, and Rado also establish

the solution for t > 1 and n large enough. The complete answer was settled by

Ahlswede and Khachatrian [3].

A natural next question is: given (large) s ∈ N, how close to t-intersecting

can a family of size s be? More precisely, given A ⊆ 2[n], define Dt(A) to be the

number of pairs (A,B) ∈ A × A so that |A ∩ B| < t. Given s ∈ N, we wish to

minimize Dt(A) over all systems with |A| = s. Call this minimum Dn,t(s). The

theorem of Katona given above establishes the values of s for which Dn,t(s) = 0.

Frankl [4] and Ahlswede [5] independently determined the answer for partic-

ular values of s when t = 1. Essentially, the optimal family has as many large

sets as possible. Given n, r ∈ N, denote
(
[n]
≥r
)

= {A ⊆ [n] : |A| ≥ r}. Such a

family is a discrete Hamming ball. We have the following.

Theorem 2 (Frankl,Ahlswede). There is an optimal set system between discrete
adjacent Hamming balls. More precisely: given B ⊆ 2[n], let r be such that(

n
≥r+1

)
≤ |B| ≤

(
n
≥r
)
. Then there is A ⊆ 2[n] with |A| = |B|,

(
[n]
≥r+1

)
⊆ A ⊆

(
[n]
≥r
)

and D1(A) ≤ D1(B).
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An immediate corollary of this theorem is that if s =
(
n
≥r
)
, then D1(s) =

D1(
(
[n]
≥r
)
). Bollobás and Leader [6] give another proof of this corollary (but not

of the theorem) by generalizing to fractional set systems and noting that the

optimal fractional set systems are {0, 1}-valued.

One would like to apply this technique for general t. However, the theorem

of Bollobás and Leader is false for t > 1. In section 4 we give some (simple)

counter examples. The question of determining the Dt minimizing fractional

set systems is still open. We give some results about the structure of an optimal

fractional set system. We provide an algorithm, polynomial in the size of the

ground set, to determine this fractional set system.

2. The Theorem of Bollobás and Leader

Given n ∈ N, we define a fractional set system on [n] to be a map

f : 2[n] → [0, 1].

The {0, 1}–valued fractional systems correspond to classical set systems. We

denote the set of all fractional set systems on 2[n] by Fn. If f ∈ Fn, we define

its weight, W (f), by

W (f) =
∑
A∈2[n]

f(A).

Given r, s ∈ R, define

r ⊕ s = max {0, a+ b− 1} .

One might think of r⊕ s is the volume of liquid that spills out of a test tube of

volume 1 if liquids of volume r and s are added to it. Given t ∈ N, we define

Dt(f) =
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

f(A)⊕ f(B).

Notice that this definition of Dt extends the previous definition. Given a fixed

weight w ≥ 0, we want to find

Dn,t(w) = inf {Dt(f) : f ∈ Fn,W (f) = w}
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To apply induction, it is useful to count the number of disjoint pairs between

two (often different) fractional set systems. Given n, t ∈ N and f, g ∈ Fn we

define

Dt(f, g) =
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

f(A)⊕ g(B).

Given v, w ∈ R, define

Dn,t(v, w) = inf {Dt(f, g) : f, g ∈ Fn,W (f) = v,W (g) = w} .

Notice in particular that Dt(f) = Dt(f, f).

Given a fixed weight w with 0 ≤ w ≤ 2n, there is exactly one f ∈ Fn of

weight w for which there exists k ∈ [0, n] and α ∈ [0, 1] such that

f(A) =


1, |A| > k;

α, |A| = k;

0, |A| < k.

Following Bollobás and Leader, we call this the Hamming ball of weight w on

2[n], and denote it by bwn .

Bollobás and Leader proved the following theorem.

Theorem 3 (Bollobás and Leader [6]). When t = 1 the optimal fractional set
system is a Hamming ball. That is, for n ∈ N and v, w ∈ R,

Dn,1(v, w) = D1(bvn, b
w
n ).

Is this theorem true for t > 1? We given a very small counter example to

establish that it is not.

Example 4. Let t > 1 and consider D1,t(1, 1). Let f ∈ F1 be given by f({1}) =
.5 and f(∅) = .5. We have that Dt(f, f) = 0. On the other hand, Dt(b11, b

1
1) = 1.

Similarly, for any positive integers n, t with 2 ≤ t ≤ n,Dn,t(2n−1, 2n−1) = 0,
but Dt(b2

n−1

n , b2
n−1

n ) > 0.

It is not the case that there are only counter examples for relatively low

weights. To see this, we first establish some general facts about Dt minimizing

fractional set systems, and then use these to give a large class of counter exam-

ples, and finally to produce an efficient algorithm to “graph” Dn,t(w) for given

n and t.
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3. Optimal Fractional Set Systems

Let 0 ≤ w ≤ 2n. By a compactness argument, there is f ∈ Fn with W (f) =

w and Dn,t(w) = Dt(f). We now prove some facts about the structure of

optimal fractional set systems.

We call a fractional set system f ∈ Fn constant on layers if for all A,B ∈ 2[n],

|A| = |B| implies f(A) = f(B). We may turn any fractional set system into

one which is constant on layers; given f ∈ Fn, we define the smear operation

σ : Fn → Fn by

σ(f)(A) =
(
n

|A|

)−1 ∑
B∈( [n]

|A|)
f(B).

Lemma 5. Given fractional set systems f, g ∈ Fn, Dt(σ(f), σ(g)) ≤ Dt(f, g).

Thus for any weight, there is a Dt-minimizing fractional set system that is

constant on layers. To prove lemma 5, we establish a more general fact that

relies on the convexity of Dt, which we now prove.

Lemma 6. The function Dt is convex. That is, given n, t ∈ N, f1, g1, f2, g2 ∈
Fn and λ ∈ [0, 1], we have

Dt(λ(f1, g1) + (1− λ)(f2, g2)) ≤ λDt(f1, g1) + (1− λ)Dt(f2, g2).

Proof. Notice that the function h(x) = max {0, 1− x} is convex. This justifies
the only inequality below.

Dt(λ(f1, g1) + (1− λ)(f2, g2))

=
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

(λ(f1(A)) + (1− λ)f2(A))⊕ (λ(g1(A)) + (1− λ)g2(A))

=
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

h (λ(f1(A) + g1(B)− 1) + (1− λ)(f2(A) + g2(B)− 1))

≤
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

λh (f1(A) + g1(B)− 1)

+
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

(1− λ)h ((f2(A) + g2(B)− 1)

= λDt(f1, g1) + (1− λ)Dt(f2, g2)
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Define the graph Gn,t to be the bipartite graph each of whose partite sets is

a copy of 2[n], and where AB is an edge if |A ∩B| < t. Let P be a partition of

the vertices of Gn,t. Given v ∈ Gn,t, let Pv be the part that contains v. A pair

(f, g) ∈ Fn × Fn is naturally a vertex weighting (f, g) : V (Gn,t) → R. Define

σP(f, g) to be the the pair (f ′, g′) ∈ Fn ×Fn given by

(f ′, g′)(v) =
1
|Pv|

∑
v′∈Pv

(f, g)(v).

In other words, σP averages the parts of P. In particular, if A is a group of

automorphisms of Gn,t, we define σA = σO, where O is the set of orbits of A.

Lemma 7. Let n, t ∈ N and let A be a group of automorphisms of Gn,t. Then
given f, g ∈ Fn,

Dt(σA(f, g)) ≤ Dt(f, g).

Proof. Since A acts on V (Gn,t), there is a natural action of A on Fn×Fn; given
φ ∈ A and (f, g) ∈ Fn × Fn, we define φ(f, g) to be the function in Fn × Fn
given by

φ(f, g)(v) = (f, g)(φ−1(v)).

Notice that
Dt(φ(f, g)) = Dt(f, g)

and
σA(f, g) =

1
|A|

∑
φ∈A

φ(f, g),

and so by the convexity of Dt and Jensen’s inequality,

Dt(σA(f, g)) ≤ 1
|A|

∑
φ∈A

Dt(φ(f, g)) = Dt(f, g).

We may use this fact to easily establish lemma 5.

Proof of lemma 5. Let φ ∈ Sn be a permutation of [n]. Notice that φ induces a
graph automorphism on Gn,t: a vertex A ⊆ [n] in a part of Gn,t is sent to the
copy of φ(A) in the same part. Two vertices v, w ∈ Gn,t are in the same orbit
of Sn if and only if |v| = |w| and v and w are in the same partite set. Clearly
then σ = σA, and so the claim follows by Lemma 7.

Notice that in Gn,t, every set A ∈
(
[n]
<t

)
is connected to every other set (in

the opposite part). Thus the set of maps that permute these vertices (without
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changing partitions) and fix all other vertices is a group of automorphisms of

Gn,t. By applying Lemma 7 we then have the following fact.

Lemma 8. Given n ∈ N, t ∈ [0, n], and u,w ∈ R, with 0 ≤ u,w ≤ 2[n], there
are f, g ∈ σ(Fn) with W (f) = u, and W (g) = w such that Dn,t(u,w) = Dt(f, g)
and for all A,B ∈

(
[n]
<t

)
, f(A) = f(B) and g(A) = g(B). �

We call such a fractional set system constant below t. From now on we may

assume without loss of generality that a Dt-minimizing function f is constant

on layers and constant below t. We call such a fractional set system t-constant,

and denote the set of t-constant fractional set systems of weight w on 2[n] by

Kwn,t. Given f ∈ Kwn,t, and i ∈ [0, n] we may define

fi = f(A),

where A is any set in
(
[n]
i

)
. For all j, k < t, we have fj = fk. We will denote

this common weight by f<t.

Given n, t ∈ N, and w ∈ R, with 0 ≤ w ≤ 2n, we would like there to exist

an f ∈ Kwn,t such that Dn,t(w,w) = Dt(f, f). This would imply Dn,t(w,w) =

Dn,t(w). The following lemma establishes this.

Lemma 9. Given n, t ∈ N and f, g ∈ Fn, Dt

(
f + g

2
,
f + g

2

)
≤ Dt(f, g).

Proof. Notice that the function φ : Gn,t → Gn,t that switches the two parts is
a graph automorphism. Further, A = {1, φ} is a group and applying Lemma 7
gives the desired result.

We call a function f ∈ Fn nondecreasing if for all A,B ∈ 2[n] with |A| ≤ |B|

we have f(A) ≤ f(B). (Notice that if f is nondecreasing then it is constant on

layers.) We have the following lemma.

Lemma 10. Given n ∈ N and v, w ∈ R, there are nondecreasing set systems
f, g ∈ Fn with W (f) = v and W (g) = w such that Dn,t(v, w) = Dt(f, g).

To aid in the proof we introduce some notation. Given n, t ∈ N, A ∈ 2[n],

and j ∈ [0, n], the number of j-sets of [n] that are t-disjoint from A is

Λn,t(A, j) = Λ(A, j) =
∣∣∣∣{B ∈ ([n]

j

)
: |A ∩B| < t

}∣∣∣∣ .
7



Notice that as a function of A, Λn,t(A, j) only depends on |A|. In particular, if

|A| = i, we define

Λ(i, j) = Λ(A, j) =
t−1∑
d=0

(
i

d

)(
n− i
j − d

)
.

Proof of Lemma 10. Let n, t ∈ N and v, w ∈ R. Let f ∈ Kvn,t and g ∈ Kwn,t have
Dn,t(v, w) = Dt(f, g). We may assume (by another compactness argument) that
s(f, g) =

∑n
i=0 i(fi + gi) is maximized over all pairs (f, g) ∈ Kvn,t × Kwn,t that

satisfy Dt(f, g) = Dn,t(v, w). We want to show that f and g are nondecreasing.
Suppose by way of contradiction that there are integers 0 ≤ i < j ≤ n such that
fi > fj (the case gi > gj is the same). We will shift some weight from i to j
obtaining f ′ with s(f ′, g) > s(f, g) and yet Dt(f ′, g) ≤ Dt(f, g), a contradiction.
To that end, choose ∆W > 0 small enough that for all k ∈ [0, n] for which
fj + fk < 1, we have fj + fk +

(
n
j

)−1∆W < 1. The quantity ∆W should also be

small enough that fi −
(
n
i

)−1∆W ≥ fj +
(
n
j

)−1∆W . Finally, it should be the

case that fi −
(
n
i

)−1∆W ≥ 0 and fj +
(
n
j

)−1∆W ≤ 1. Define f ′ ∈ Fn by

f ′(A) =


f(A), |A| /∈ {i, j} ;
fj +

(
n
j

)−1∆W |A| = j;

fi −
(
n
i

)−1∆W |A| = i.

Notice that W (f ′) = W (f), and that s(f ′, g) = s(f, g) + (j − i)∆W . Further
notice that

Dt(f, g)−Dt(f ′, g′) =
∑

A∈([n]
j ),B∈2[n]

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

+
∑

A∈([n]
i ),B∈2[n]

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

=
n∑
k=0

( ∑
A∈([n]

j ),B∈([n]
k )

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

+
∑

A∈([n]
i ),B∈([n]

k )
|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]
)

Fix k ∈ [0, n]. We show that the corresponding term in the last sum is non-
negative. We have two cases: either fj + fk < 1 or fj + fk ≥ 1. If fj + fk < 1
then by our choice of ∆W , we have f ′j + fk < 1. Thus for all A ∈

(
[n]
j

)
and

B ∈
(
[n]
k

)
, f(A)⊕ g(B) = 0 and f ′(A)⊕ g(B) = 0. For A ∈

(
[n]
i

)
and B ∈

(
[n]
k

)
,
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f(A) ⊕ g(B) − f ′(A) ⊕ g(B) is always nonnegative, so the case fj + fk < 1 is
settled.

If fj + fk ≥ 1, then fi + fk ≥ 1, f ′j + fk ≥ 1, and f ′i + fk ≥ 1 by the choice
of ∆W . Thus∑
A∈([n]

j ),B∈([n]
k )

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)]

=
∑

A∈([n]
j ),B∈([n]

k )
|A∩B|<t

[
(fj + gk − 1)− (fj +

(
n

j

)−1

∆W + gk − 1)

]

= −
(

[n]
j

)
Λ(j, k)

(
n

j

)−1

∆W

= −Λ(j, k)∆W

Similarly, ∑
A∈([n]

i ),B∈([n]
k )

|A∩B|<t

[f(A)⊕ g(B)− f ′(A)⊕ g(B)] = Λ(i, k)∆W

Notice that because j > i, there are more k sets that have small intersection
with a given i set than there are k sets that have small intersection with a given
j set. In other words, Λ(j, k) ≤ Λ(i, k). Hence the term corresponding to k in
the sum above is nonnegative.

We say a set system f ∈ Kwn,t is t-canonical if f is nondecreasing. We denote

the set of t-canonical fractional set systems of weight w by Cwn,t

4. More Counter Examples

In this section we give some more counter examples to the t > 1 case of

the theorem of Bollobás and Leader, and we find the minimizing fractional set

system when t >
⌈
n
2

⌉
.

Example 11. Let n, t ∈ N, t ≤ n. For w ∈ R with(
n

≥ t

)
+ 1/2

(
n

t− 1

)
< w < 2n − 1/2,

We have Dt(bwn ) > Dn,t(w).
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Proof. Let A = {1, 2, . . . , t− 1}. By our choice of w, bwn (A) > 1/2. Let ∆w > 0
be less than bwn (A)−1/2 and less than 1/2− bwn (∅). Consider f ∈ Fn defined by

f(B) =


bwn (∅) + ∆w if B = ∅
bwn (A)−∆w if B = A

bwn (B) if B /∈ {A, ∅} .

Since A and ∅ are t-disjoint from everything, we have that

Dt(bwn )−Dt(f)

= 2
∑

B∈2[n]\{∅,A}

[bwn (A)⊕ bwn (B) + bwn (∅)⊕ bwn (B)]

− 2
∑

B∈2[n]\{∅,A}

[f(A)⊕ f(B) + f(∅)⊕ f(B)]

+ bwn (A)⊕ bwn (A) + bwn (∅)⊕ bwn (∅)
− f(A)⊕ f(A)− f(∅)⊕ f(∅)

= 2
∑

B∈2[n]\{∅,A}

[(bwn (A)⊕ bwn (B)− f(A)⊕ f(B))]

+ 2
∑

B∈2[n]\{∅,A}

[(bwn (∅)⊕ bwn (B)− f(∅)⊕ f(B))]

+ (bwn (A) + bwn (A)− 1)− (f(A) + f(A)− 1)

= 2
∑

B∈2[n]\{∅,A}

[(bwn (A)⊕ bwn (B)− f(A)⊕ f(B))]

+ 2
∑

B∈2[n]\{∅,A}

[(bwn (∅)⊕ bwn (B)− f(∅)⊕ f(B))]

+ 2∆w

Notice that bwn (A) ⊕ bwn (B) − f(A) ⊕ f(B) ≥ 0, and furthermore, if bwn (∅) ⊕
bwn (B)− f(∅)⊕ f(B) < 0, then f(∅) + f(B) > 1, so f(B) > 1/2 and thus since
bwn (B) = f(B), we have

(bwn (A)⊕ bwn (B)− f(A)⊕ f(B)) + (bwn (∅)⊕ bwn (B)− f(∅)⊕ f(B))
= (f(A) + ∆w + f(B)− 1)− (f(A) + f(B)− 1)

+ (f(∅)−∆w)⊕ f(B)− (f(∅) + f(B)− 1)
≥ ∆w

+ (f(∅)−∆w + f(B)− 1)− (f(∅) + f(B)− 1)
= 0

Thus Dt(bwn )−Dt(f) ≥ 2∆w > 0 as desired.
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Given n, t ∈ N, and a fixed weight w with 2n−1 ≤ w ≤ 2n, there is exactly

one f ∈ Cwn,t of the form

f(A) =


1, |A| > k;

α, |A| = k;

1/2, |A| < k.

where k ∈ [t − 1, n] and α ∈ R with 1/2 ≤ α ≤ 1. We call this the t-half-ball

of weight w on 2[n]. For w < 2n−1 the system with constant weight f(A) =
w

2n
will also be called a t-half-ball. We denote the t-half-ball of weight w on 2[n] by

hwn,t.

Theorem 12. Let n, t ∈ N with t >
⌈n

2

⌉
, and let w ∈ R with 0 ≤ w ≤ 2n.

Then among the optimal fractional set systems is the t-half-ball. That is,

Dn,t(w) = Dt(hwn,t).

Proof. If w ≤ 2n−1, then hwn,t is the constant fractional set system with total
weight w. This constant value is no more than 1/2, so Dt(hwn ) = 0 = Dn,t(w)
as desired. Thus we assume that w > 2n−1.

Now let f ∈ Cwn,t with Dn,t(w) = Dt(f). We may assume (by a compactness
argument) that f<t is as large as possible. We claim that f<t ≥ 1/2. Notice
that in these circumstances,

Dt(f) =
∑

(A,B)∈2[n]×2[n]

|A∩B|<t

f(A) + f(B)− 1,

and thus we want to keep weight in the sets that occur least often in the sum.
That is, we want as much weight as possible in large sets while maintaining
the property that the weight on every set is at least 1/2. Of course, hwn,t does
exactly that, and so Dn,t(w) = Dt(f) ≥ Dt(hwn,t), and the theorem is proved.

Suppose f<t < 1/2. Let l = min {j ∈ [0, n] : fj ≥ 1/2}. (Notice that
{j ∈ [0, n] : fj ≥ 1/2} is nonempty since w > 2n−1). Choose ∆w > 0 small
enough so that fl−1 +

(
n
≤l−1

)−1∆w ≤ fl−
(
n
≥l
)−1∆w and fl−1 +

(
n
≤l−1

)−1∆w ≤
1/2. Define g ∈ Cwn,t by

gi =

{
fi −

(
n
≥l
)−1∆w if i ≥ l;

fi +
(

n
≤l−1

)−1∆w if i < l.

We show that for any (i, j) ∈ [0, n] × [0, n], gi ⊕ gj ≤ fi ⊕ fj . For (i, j) ∈
[l, n] × [l, n], we have gi < fi and gj < fj . Thus gi ⊕ gj ≤ fi ⊕ fj . For
(i, j) ∈ [l, n]× [0, l−1], we have gi+gj = fi−

(
n
≥l
)−1∆w+fj+

(
n
≤l−1

)−1∆w. But

11



l ≥ t > dn/2e, so
(
n
≥l
)
≤
(

n
≤l−1

)
and hence gi + gj ≤ fi + fj , so gi⊕ gj ≤ fi⊕ fj .

Similarly, for (i, j) ∈ [0, l−1]×[0, n], gi⊕gj ≤ fi⊕fj . If (i, j) ∈ [0, l−1]×[0, l−1],
then by our choice of ∆w, gi and gj are both no more than 1/2, and so gi+gj ≤ 1,
and gi ⊕ gj = 0 ≤ fi ⊕ fj .

Now we easily have

Dt(g) =
∑

(i,j)∈[0,n]×[0,n]

(
n

i

)
Λi,j (gi ⊕ gj)

≤
∑

(i,j)∈[0,n]×[0,n]

(
n

i

)
Λi,j (fi ⊕ fj)

= Dt(f)

But by our choice of ∆w, g ∈ Cwn,t and furthermore g<t > f<t. This is a
contradiction. Hence f<t ≥ 1/2, and the theorem follows.

Corollary 13. If n ≥ 1, t >
⌈n

2

⌉
, and

(
n
bn+t

2 c
)
< w < 2n − 1/2 then the

Hamming ball is not optimal. That is,

Dt(bwn ) > Dn,t(w).

Proof. If w >
(
n
≥t
)

+ 1/2
(
n
t−1

)
then we are done by Example 11. Suppose then

that w ≤
(
n
≥t
)

+ 1/2
(
n
t−1

)
. Let f ∈ Fn be non-decreasing and constant on

layers. Notice that if ft−1 < 1/2, and Dt(f) > 0, then the shift in the proof
above strictly decreases Dt. We now show that Dt(bwn ) > 0. Let

A =
{

1, 2, . . . ,
⌊
n+ t

2

⌋
− 1
}
,

and

B =
{
n−

⌊
n+ t

2

⌋
+ 1, . . . , n

}
.

Then

|A ∩B| ≤
⌊
n+ t

2

⌋
− 1− (n−

⌊
n+ t

2

⌋
+ 1) + 1

= 2
⌊
n+ t

2

⌋
− n− 1

≤ t− 1.

But |A| =
⌊
n+t
2

⌋
− 1, and |B| =

⌊
n+t
2

⌋
, and since w >

(
n
bn+t

2 c
)
, bwn (A) > 0 and

bwn (B) = 1. Hence bwn (A) ⊕ bwn (B) > 0 and so Dt(bwn ) > 0. But w ≤
(
n
≥t
)

+
1/2
(
n
t−1

)
<
(
n
≥t
)

+ 1/2
(

n
≤t−1

)
. Thus smearing bwn below t yields f , a set system

with the property that f<t < 1/2, and Dt(f) ≤ Dt(bwn ). If Dt(f) < Dt(bwn ) we
are done. Otherwise Dt(f) = Dt(bwn ) > 0. Applying the shift above, we strictly
decrease Dt, establishing the result.
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5. An Algorithmic Solution

Given n, t ∈ N and w ∈ R with 0 ≤ w ≤ 2n, we say f ∈ Fn is a pseudo-ball

if all of its values are 0, 1/2, or 1. Notice that the number of pseudo-balls in

Cwn,t is finite. We have the following theorem, which we prove later.

Theorem 14. Dn,t(w) is the maximum convex function below the points

{(W (f), Dn,t(f)) : f is a pseudo-ball}

In particular, Dn,t(w) is piecewise linear, and the points where the slope

changes correspond to pseudo-balls. Thus we may “graph” Dn,t(w) as follows:

compute Dt for each of the pseudo-balls, and then use a convex hull algorithm to

find Dn,t(w). There are
(
n−t+4

2

)
pseudo-balls in Cwn,t, and it takes O(n2) time to

compute Dt of a given pseudo-ball. This yields an O(n4) run time to compute

Dt for every pseudo-ball. We apply the convex hull algorithm to the O(n2)

pseudo-balls. This takes O(n4) time, and so overall this process completes in

O(n4) time.

Lemma 15. Given n, t ∈ N and 0 ≤ w ≤ 2n, there is f ∈ Cwn,t with Dn,t(w) =
Dt(f) and with (fi)ni=0 having the form

(fi)ni=0 = (0, . . . 0︸ ︷︷ ︸
l0

, 1− δ, . . . , 1− δ︸ ︷︷ ︸
l1−δ

, 1/2, . . . , 1/2︸ ︷︷ ︸
l1/2

, δ, . . . , δ︸ ︷︷ ︸
lδ

, 1, . . . , 1︸ ︷︷ ︸
l1

)

Where 1/2 < δ < 1, and l0, l1−δ, l1/2, lδ, l1 ∈ [0, n + 1] are integers that sum to
n+ 1.

Proof of Lemma 15. We will see that the space Cwn,t can be divided into finitely
many parts, P1, . . . , Pp, defined by linear inequalities, in such a way that Dt

is an affine function on each part. Thus, on each part, minimizing Dt is a
linear programming problem. Recall that if a (minimizing) solution to a linear
programming problem exists, then there is a solution at a vertex of the feasible
region of the problem. We will see that for all i, every vertex in Pi is of the
form claimed in the lemma. Since the Dt minimizing f must appear in one of
the parts, the lemma is established.

First, we may think of a fractional set system f ∈ Cwn,t as a function in
R{t−1,...,n}. This function is subject to the following linear constraints. (Recall
that we use f<t to denote the common weight on the sets of size less than t.
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This is identical to ft−1.)

W (f) = w (1)
0 ≤ f<t (2)
fi ≤ fi+1 for all i ∈ [t− 1, n− 1] (3)
fn ≤ 1 (4)

Let R ⊆ [t−1, n]× [t−1, n]. Then we define PR to be the set of f ∈ Cwn,t subject
to additional constraints

fi + fj ≥ 1 if (i, j) ∈ R (5)
fi + fj ≤ 1 if (i, j) /∈ R (6)

Notice that given f ∈ Cwn,t, every pair (i, j) ∈ [t−1, n]× [t−1, n] has fi+fj ≤ 1
or fi + fj ≥ 1, and so f is in some PR. More importantly, if we set

ci,j =

{(
n
i

)
Λ(i, j) if i ≥ t;(

n
<t

)∑t−1
k=0 Λ(i, k) if i = t− 1,

then for all f ∈ PR,

Dt(f) =
∑

(i,j)∈R

ci,j(fi + fj − 1).

Thus Dt is affine on each PR. Fix R. We are now ready to find the vertices
of PR. We may think of the coefficients on a constraint as a vector in Rn−t+2.
For example, the constraint fi ≤ fi+1 is equivalent to fi − fi+1 ≤ 0 and so it
corresponds to a vector of the form

(0, . . . , 0, 1,−1, 0, . . . , 0).

Similarly, the constraint fi + fj ≥ 1 becomes a vector with ones in positions i
and j, and 0’s elsewhere. Since we are thinking of Cwn,t as an n−t+2 dimensional
space, a fractional set system is a vertex if it achieves equality for n−t+2 linearly
independent constraints. Notice that equality always holds for constraint (1),
and so we want equality to hold for n − t + 1 linearly independent constraints
of types (2)-(6). Let f ∈ PR be a vertex of PR. Given δ ∈ [1/2, 1], define

Sδ = {i ∈ [t− 1, n] : fi = δ or fi = 1− δ} .

Define Cδ to be the set of coefficient vectors for the constraints of types (2)-(6)
that f exactly meets, and where for some i ∈ Sδ, the ith entry is nonzero. Let
C be the set of vectors corresponding to all constraints for which f achieves
equality. By our choice of f , we have rank C = n − t + 2. On the other hand,
if ~w is the vector corresponding to the weight constraint, then

C = {~w} ∪
⋃

δ∈[1/2,1]

Cδ,
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and so
rank C ≤ 1 +

∑
δ∈[1/2,1]

rank Cδ.

Notice that this sum is finite, since f only takes on finitely many values. Notice
further that the only nonzero coefficients in a constraint in Cδ are on fi with
fi = δ or fi = 1 − δ. Thus rank Cδ ≤ |Sδ|. Consider δ not equal to 1/2 or 1.
Given v ∈ [0, 1], denote f−1(v) = {i ∈ [t− 1, n] : fi = v}. Let ~p ∈ R{t−1,t,...,n}

be the vector that is 1 on f−1(δ), −1 on f−1(1 − δ), and 0 everywhere else.
Notice that no vector in Cδ corresponds to constraints (2) or (4), and so in
particular for all ~v ∈ Cδ, we have ~v · ~p = 0. Thus when we restrict our vectors
to Sδ (the support of Cδ), the dimension of the space perpendicular to Cδ is at
least 1. This implies that

rank Cδ ≤ |Sδ| − 1

Thus if d is the number of distinct nonempty Sδ other than S1 and S1/2, we
have

n− t+ 2 = rank C

≤ 1 +
∑

δ∈[1/2,1]

rank Cδ

≤ 1− d+
∑

δ∈[1/2,1]

|Sδ|

= 1− d+ n− t+ 2

By canceling terms and rearranging, d ≤ 1, and the claim is proved.

Proof of Theorem 14. First we see that Dn,t is convex: let w1 and w2 have
0 ≤ w1 ≤ w2 ≤ 2n. Then for i = 1 or 2, there exists fi ∈ Cwin,t such that
Dn,t(wi) = Dt(fi). Let λ ∈ [0, 1]. Then

Dn,t (λw1 + (1− λ)w2)
≤ Dt (λf1 + (1− λ)f2)
≤ λDt(f1) + (1− λ)Dt(f2)
= λDn,t(w1) + (1− λ)Dn,t(w2)

Next we see that Dn,t is piecewise linear. Let l0, l1−δ, l1/2, lδ, l1 be nonneg-
ative integers that sum to n+ 1. Also, let δ ∈ [1/2, 1]. Define

fδ = (0, . . . 0︸ ︷︷ ︸
l0

, 1− δ, . . . , 1− δ︸ ︷︷ ︸
l1−δ

, 1/2, . . . , 1/2︸ ︷︷ ︸
l1/2

, δ, . . . , δ︸ ︷︷ ︸
lδ

, 1, . . . , 1︸ ︷︷ ︸
l1

)

Notice that the weight of fδ is affine in δ, as is Dn,t(fδ). Thus the graph of
{(W (fδ), Dt(fδ)) : δ ∈ [1/2, 1]} is a line segment. By Lemma 15, Dn,t(w) is the

15



minimum value among all the line segments of this type that are defined at w.
Thus Dn,t is piecewise linear.

Changes of slope occur at the end of the line segments described above or
at the intersection of two of them. As it turns out, slope does not change at
an intersection of two of these line segments if the intersection is not also an
endpoint for one of the line segments. This is true because otherwise near the
point of intersection, Dn,t would be the minimum of two line segments, which is
not a convex function. Thus the slope of Dn,t changes at endpoints of the line
segments described above. But the endpoints occur where W (fδ) is maximized
or minimized. These extrema occur when δ = 1/2 and δ = 1. In either case, fδ
is pseudo-ball.

6. Conclusion

In summary, this paper shows that the specific proof technique (via fractional

set systems) used in [6] to establish the minimum number of disjoint pairs in

a set system does not transfer to the problem of minimizing the number of t-

disjoint pairs when t ≥ 2. We provide some insight into the structure of extremal

fractional set systems. The problems of determining extremal set systems and

extremal fractional set systems are still open.
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