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Hospital inpatients often fall during an exit from the bed or in the ensuing seconds and minutes.
Existing fall prevention technologies fail to provide adequate lead time to a patient bed exit or
exhibit high rates of false alarms. To address these limitations and reduce risk of falls for
patients and hospitals, we have developed a 3D camera-based system, named Ocuvera, for
monitoring patients at risk of falling, without requiring a human monitor. The developed auto-
mated system looks for cues that predict a likely bed exit. If the system determines that the risk
to patient safety is high, the system alerts nursing staff, often with enough lead time to prevent
the exit. In this paper we discuss the algorithmic pipeline of the developed system, starting
with the raw camera feed and ending with alarms. Emphasis will be placed on computer vision
models of behaviors and objects, as well as a machine-learned bed exit risk model.

Introduction

Patient falls are a common, costly, and serious patient
safety problem in hospitals, long-term care, and other care
facilities. Approximately 2 to 3% of hospitalized patients
fall each year [1, 2] resulting in nearly one million falls in
U.S. hospitals; approximately one-fourth of these falls result
in injury [1, 3]. Among patients who fall, the cost of care
for the 2% of patients who sustain serious injury is nearly
$14,000 greater than for patients who do not [4]. Conse-
quently, falls are designated as one of eleven preventable
Hospital-Acquired Conditions by the Centers for Medicare
and Medicaid Services [5].

As many as 80% to 90% of falls in hospitals may be un-
observed [6]. Unobserved and unassisted falls frequently fol-
low unobserved and unassisted bed exits. Thus, one possible
approach to reduce falls and fall-related injury in hospitals is
to decrease the likelihood of unassisted bed exits.

Existing approaches to fall injury reduction have well-
known shortcomings, as described in the Related Work sec-
tion, including the inability to accurately and prospectively
predict bed exits with enough lead time for healthcare profes-
sionals to respond and meet the patient’s needs. This techno-
logical inadequacy presents a significant barrier to progress
in reducing fall-related injury.

In this paper, we introduce a new method for monitoring
hospital inpatients for fall risk. This method provides an abil-
ity to predict bed exits with adequate lead time for a response,
and thereby potentially allowing nursing staff time to prevent
an unattended bed exit and prospective subsequent fall. This
prediction is done by detecting conditions or trends that indi-

cate the patient may be attempting, about to attempt, to exit
the bed.

The structure of this paper is as follows. We discuss Re-
lated Work of others to prevent falls among hospital inpa-
tients. We introduce our new method for monitoring patients
and predicting bed exits. Finally, the results are discussed
and directions for future research are given.

Related Work

Interventions intended to decrease the risk of patient falls
come in a variety of forms. As no single intervention has
been proven to reliably decrease the risk of unattended bed
exits and associated injury in patients at high risk for falls,
these interventions must be implemented in conjunction, tar-
geted at a patient’s specific risk factors to be effective [7, 8]:

e Fall injury mitigation: Floor mats and low beds may
reduce injuries from falls, but do not prevent unat-
tended bed exits or alert hospital staff that a patient
is attempting to exit the bed.

o Fall detection: Technologies designed to detect when
a fall has occurred, including many wearable systems,
but cannot prospectively notify personnel of a patient’s
intent to exit the bed.

e Patient restraints: Use of four bed rails (both upper
and lower rails) and patient restraints are associated
with an increased rate of injury without decreasing fall
rates [9].
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1) Raw 3) States 4) Alarms

Figure 1. Our pipeline. We start with a 1) A raw depth frame,
initially compute 2) A scene including bed and floor, then 3)
Patient states, and 4) We fuse our state history with a decision
tree to make an alarm decision

e Patient monitoring: Closed circuit or remote video
monitoring can predict and detect unattended bed ex-
its, but rely on additional, dedicated staff who are vul-
nerable to attention fatigue. In-room sitters—people
who sit with the patient twenty-four hours a day—are
frequently used for real-time monitoring, but there is
little evidence that their use mitigates fall risk [8, 10].

o Bed exit detection: Pressure pad alarm systems or "vir-
tual bed rails" can detect bed exits, but have high false
positive rates, which contributes to alarm fatigue and
delayed response by hospital personnel [11].

e Bed exit prediction: Pressure pads that detect changes
in posture may alert staff that a patient is planning to
exit the bed; however, existing technologies have high
false positive rates [11].

e Fall risk reduction training: Focusing on adaptive
training by improving the standardization, planning,
and real-time adjustment of the human response to fall
risk can decrease fall rates [16]. However, without im-
proved assistive technology, gains in fall risk reduction
are limited by the technology used itself.

The prevalence of these limitations is consistent with the
fact that little progress has been made in decreasing fall-
related injury as a healthcare acquired condition [12]. To
challenge the existing paradigm, we must address the limi-
tations in existing fall prevention technologies. To prevent
falls, technology should notify hospital personnel prospec-
tively so that there is sufficient response time for a healthcare
professional to assess and assist the patient.

Methods

In this section we will discuss our algorithmic pipeline,
with an emphasis on the modeling aspects.

a) Depth b) Infrared c) RGB d) 3D
Figure 2. Image streams available from Kinect: a) depth, b)
infrared and c¢) RGB. Image d) illustrates a 3D model of the
scene that can be reconstructed from the depth information.

Raw Signal

Our algorithms are built on top of the raw data streams
available from Microsoft’s Kinect for Xbox One sensor [13].
The Kinect provides the following basic raw data streams:
a 1080p RGB video feed, a 512 x 424 Infrared (IR) video
stream (which can be used for night vision), a 512 x 424
depth stream, and a stereo audio stream. See Figure 2 for an
illustration of the available image streams.

A depth image from the Kinect is a 512x424 image where
the value at a given pixel represents the depth from a plane
containing the camera perpendicular to the focal axis, in mil-
limeters. For example, if the camera were directly facing
a wall 1 meter away, every pixel on the wall would have a
value of 1000, plus or minus some noise. This information
can be used to reconstruct a 3D representation of the scene
(See Figure 2d).

Microsoft provides the Microsoft Kinect for Windows
SDK that computes a variety of potentially useful signals
[14]. Most notably, it computes an estimate of a skeleton
for people in view of the Kinect depth camera. While some
research suggests this data can be useful [15], we have found
this skeletal data to be of limited use for monitoring patients
in inpatient settings. Skeletal data from the Microsoft Kinect
for Windows SDK is most reliable when people are standing
far from nearby obstructions and backgrounds. Inpatient sub-
jects are typically supine or seated, are close to background
objects such as beds and chairs, and are frequently occluded
by staff or equipment.

Computation of States

Using the depth video, we estimate several states that are
important for predicting bed exits. The states we use were
chosen over a period of time in a highly iterative and hands-
on modeling process. That is, we started with a simple pre-
dictive model built on a small number of states, tested our
predictive ability, looked to determine what states might im-
prove prediction, added them, and repeated.

Floor Finding. First, we find the floor. We do this by
using a heuristic filtering step that selects many points in the
frame as possible floor points. Then we use RANSAC, a
well-known algorithm for finding shapes in points clouds, to
find a large plane in that set.
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Figure 3. An overhead view of the scene used in determin-
ing the bed location. Blue points represent space that might
contain an object of the right height and thickness to be part
of the bed.

Bed Finding. Next we find the bed. In simple terms, there
are two steps: bed location finding and bed modelling. In the
bed location phase, we first find all the points on the floor
that might be below the bed, in the sense that they could be
under an object of the right height and thickness (see Figure
3). We then find all rectangles on the floor that are the size
of a bed and contain nothing but those potential bed points.

Next, we pass each rectangle found into the bed modeler.
The modeler closely examines the point cloud to find the foot
of the bed, then the plane of the main segment of the bed, and
finally the head of the bed (which can be at an angle, since
most hospital beds bend for the convenience and comfort of
the nurses and patients.

We essentially compute a fitness function for each bed
model generated this way and take the best one. In practice
we reduce computation time by first computing the fitness for
a sparse set of bed locations, and then focus on a more fine-
grained subset near high fitness models. The fitness func-
tion is meant to approximate the likelihood that the bed we
have modeled would appear as it does in the depth frame.
Essentially, the further the distance of points above the bed
from the model, the lower the fitness, and if there are points
that appear behind the supposed surface of the bed, this an
obvious error that incurs a large fitness penalty.

After initially computing the floor and bed, we continu-
ally monitor to determine whether their positions should be
re-computed.

Machine Learned States. In addition to the floor and
bed, we also look in the scene for certain body parts, objects
and poses. Several of these are estimated using machine-
learned shape models developed by our team. For example,
we have a classifier that detects heads. For each pixel in the
image, the classifier determines whether or not it is part of a
head. This classifier is a decision-tree whose splitting rules
are basic geometric questions. Other examples of machine-
learned shape models are classifiers that estimate the torsos
of people facing the edge of the bed and the torsos of people

leaning into the bed. Another example of body part estima-
tion being used in applications is by Microsoft, which used
body part estimation in developing the original Kinect SDK
[16].

In addition to these per-pixel classifiers, we have learned
convolutional neural networks for detecting more holistic
states, such as whether or not a sequence of frames contains
a bed exit.

People Tracking We monitor the location of people in
the room. This is done by combining the foreground of the
image (i.e., those points that are in front of a learned back-
ground) with machine-learned heads, and comparing the his-
tory of frames to determine which people in past frames cor-
respond to the people in the current frame. Significant effort
and computation go into keeping track of people over frames
and into distinguishing between various people, especially
as hospital personnel frequently physically interact with pa-
tients.

Other States For each person in the scene, we compute a
variety of states relevant to the likelihood of bed exit. These
include whether the person is sitting up, facing the edge of
the bed, in the bed, or on the floor, whether their leg is hang-
ing off the bed, whether they are near the edge of the bed,
their level of activity, and so on. These states are primarily
hand-written (rather than machine-learned) and largely rely
on looking for certain sets of pixels or geometric shapes in
certain locations with specific properties relative to the bed.

Alarms

Our system is designed to predict a patient bed exit and
and trigger an alarm before one occurs. These predictive
alarms rely on an explicit model of the risk of an impending
bed exit. In addition to these predictive alarms, we throw an
alarm if the patient exits the bed.

Each alarm relies solely on the resulting states discussed
in the Subsection Computation of States above.

Predictive alarms. Our predictive alarms work by con-
stantly assessing the current probability of a bed exit in the
next 5 minutes and firing an alarm if that risk ever rises above
a configurable threshold. The model we have chosen for this
probability is a decision tree, where individual questions are
about the recent history of a single state. See Figure 4 for
an example of the type of tree we have learned. We chose
decision trees over other model types (we considered Naive
Bayes, Neural Networks, and Hidden Markov Models among
others) because they achieve our performance goals and are
easy to explain: our alarming policy can be read off in natural
human language directly from the tree.

We currently ask questions about the states enumerated in
the Computation of States section. We can also incorporate
questions about the time of day; intuitively, a patient who
moves a lot during the night is more likely to exit the bed than
a patient moving around a lot during the day. We anticipate
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Risk ® 10%

Risk 12% Yes :|
Did the patient stop | -~
facing the edge of bed |\~
4 in the last minute?
No
Yes Risk: 13% .

Did Fatient SitUp In | _
The Last Minute? >

No Risk : 3%

\ Risk 1% e
Was the patient moving | -
at least 5% of the time |~

in the last minute? o

Risk : 0%

Figure 4. An example of the type of decision tree used to
determine whether or not to predict a bed exit.

using diagnosis, medication, evaluation results, integration
with other systems, and other such data in the future. The
questions we ask can have the following structures.

e [s a state equal to a particular value? For example, is
the patient sitting up?

¢ Did the state change from one particular value to an-
other recently? For example, did the patient go from
not facing the edge of the bed to facing the edge of the
bed in the last minute?

e Has the current state been stable for some period of
time? For example, has the patient been near the edge
of the bed for at least 10 seconds?

There are other variants on these types of questions that
are meant to be more general and to handle occasional state
errors more robustly. In particular, we can ask about win-
dows of time that don’t include the current time ("did the pa-
tient hang their leg off the bed between 60 and 90 seconds
ago?") and we can ask questions such as "has the patient
been alone in the room for 90% of the time in the last two
minutes?"

We learn our trees with a variant on a standard decision
tree learning algorithm. Specifically, when choosing the first
question to ask, we randomly generate a large pool of ques-
tions of the form described above, and choose the question
from that pool that maximizes the information gain with re-
spect to the question "will there be a bed exit in the next 5
minutes?" To get our left subtree, we repeat this procedure
on just the data where the answer to our learned question is
no. Similar for our right subtree.

There are some implementation details that might be of
interest. We are able to try many questions quickly by 1)

Computing states once and re-using them rather than running
the entire computer vision pipeline for every possible ques-
tion, and 2) Carefully implementing the questions to run in
time proportional to the number of state changes, rather than
the number of frames of video. Also of interest is that while
we want to alarm on bed exits that occur while the patient
is unattended, we found that our models generalized better
if we trained on all bed exits, attended or not. We speculate
that this improvement is due to 1) the resulting larger train-
ing set and 2) changing the responsibility of the learner from
determining whether the patient would exit the bed ALONE
to the easier question of whether or not the patient would
simply exit the bed (alone or not).

Bed exit alarms. These alarms are designed to trigger
when we detect a bed exit. The exact circumstances under
which it fires can be configured on a per-patient basis and this
configuration can affect the sensitivity and false positive rate
of the alarm. For example, we can suppress bed exit alarms
when the patient was not seen facing the edge of the bed.
This allows the system to better distinguish, for instance, a
patient exiting the bed from a nurse leaning into and then out
of the bed to fix the sheets. On the other hand, this filter
suppresses alarms in the rare, but real, circumstance that a
patient exits the bed without sitting up at the edge of the bed.

Per-patient alarm configuration. We allow the alarms
mentioned (Predictive alarms, Bed exit alarms, and other
alarm types) to be individually enabled or disabled, as well
as further configured, for instance by adjusting the risk level
threshold, on a per-patient basis.

Experimental Environment

The described method was developed and tested using
anonymous depth video data collected from multiple hospi-
tal sites. Said data provide the ability to retroactively and
repeatedly train and test methods and algorithms using real
patient behaviors.

Results

We present results of our algorithmic pipeline. The true
efficacy and effectiveness of a fall prevention system is ide-
ally determined by a clinical study determining its impact on
fall and bed exit rates. For developing and testing our system,
we indirectly estimate our impact on these rates by simulat-
ing alarm behavior on previously recorded anonymous depth
video. We have randomly assigned this recorded data into
two groups: video we observe to develop our algorithms and
models, and video that we only use to measure our system.
The results reported here are for the second group, which
consists of roughly 13000 hours of video from 110 patients.

Our main metric is sensitivity: the percent of unattended
bed exits that we alarm on. The main assumption we have
made is that the number of falls after a bed exit is propor-
tional to the number of unattended bed exits.
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We also recognize that nursing staff suffer from alarm fa-
tigue, which can affect alarm response time, so we maintain
a metric that captures the believability of our alarms. This
metric is positive predictive value (PPV), i.e., the percent of
alarms that are true positives.

Our third metric is lead time: the number of seconds be-
fore a bed exit that our system initially sends an alarm.

There are some subtleties in these definitions. What does
it mean to "alarm on" on a bed exit if the alarm is predictive
and occurs a minute or more before the actual exit? Should
we count a predictive alarm as a true positive if the patient
showed every sign of exiting the bed, but changed their mind,
or was interrupted by a nurse? The choice we have made is
to count alarms in the 5 minutes proceeding a bed exit and
the five seconds afterwards as true positives, unless a human
reviewer has determined that there were no signs of an in-
tention to exit the bed at the time of the alarm. Furthermore,
we count as a true positive any alarm thrown while the pa-
tient is doing behavior associated with an elevated risk of a
bed exit, such as sitting at the edge of the bed while alone.
In general, we take a conservative approach to grading such
subtleties and therefore our results tend to represent a worst-
possible grading. For example, imagine a patient exits the
bed multiple times in short succession, and we alarm only on
the first exit (perhaps because the system doesn’t believe that
the state has changed enough to warrant a second alarm). We
count only the first exit as alarmed on in our sensitivity stats,
even though the subsequent bed exits would likely have been
prevented.

We report our sensitivity and PPV in the case where the
patient is alone, anticipating that alarms will be disabled
when nursing staff enter the room, either automatically by
our system when detected, automatically by communica-
tion with a third-party nurse-location sensor, or manually by
pressing a button to temporarily disarm the system.

Finally we report the stats with filters off (such as the filter
described above, based on whether the person was recently
seen facing the edge of bed). Turning filters on generally
decreases sensitivity and increases PPV.

PPV
54%

Sensitivity
95%

Average Lead Time
45 seconds

Table 1
Conservative results from 110 patients.

Discussion

Here we discuss some limitations of our current metrics
as well as directions for future research.

Subsampling. We do not run all of our video to com-
pute our statistics; it would be prohibitively time consum-
ing. Instead, we randomly sample 2% of our video and use
that to estimate our PPV. The estimate given above is there-
fore unbiased, but likely differs somewhat from the PPV we

would measure if we were to compute it exactly over all of
our video. We run our algorithms against video of all bed
exits, so the sensitivity is the exact sensitivity for the data we
have collected.

Different population. The population of patients in our
database may differ from the population that will use our sys-
tem in practice. In particular, we have attempted to limit our
data to patients who are at an elevated risk of fall, but the
procedure for deciding who is at an elevated fall risk might
be different at different facilities.

Alarms may change behavior. We passively recorded
the video that our system is developed and tested on. It seems
likely that activating our alarms will change patient and nurse
behavior, which could have an affect on the metrics we are
computing, including reducing the number of unattended bed
exits.

Staff will have instant video feedback. One advantage
of the technology presented is its ability to provide RGB,
IR or depth images or video along with alarms. This pro-
vides nurses with additional context for the alarm, i.e., video
of what the patient is currently doing. This will likely re-
duce the impact of a false positive—nurses will quickly ascer-
tain that attending to the patient is unnecessary in a partic-
ular situation—and hasten response to a true positive—nurses
will also be able to determine how important it is to respond
quickly in a given situation. While this additional context is
valuable, how it should be delivered to staff presents a chal-
lenge. Most existing alarm technologies do not provide nurs-
ing staff with devices that have the ability to display video,
and the introduction of a new, separate device may not be
optimal for staff.

Logistical issues. Furthermore, there are likely to be lo-
gistical issues that affect the efficacy of the system in prac-
tice. In particular, in discussions with hospitals and nurs-
ing staffs, several challenges have been anecdotally identi-
fied with delivery and response to alarms: staff is very busy,
there are already many alarms from many different sources,
existing alarm technology can be difficult to integrate with,
technology and preferences are different on a per-hospital
and even per-unit basis, and staff does not want to carry ad-
ditional devices because of the inconvenience. These chal-
lenges must be overcome in order to deliver alarms to the
right person, at the right time, and provide enough lead time
to intervene and prevent an adverse outcome.

Future Directions. We have the automated video moni-
toring system active in several hospital rooms, and staff re-
sponse has been quite positive. Based on this feedback, we
believe Ocuvera is currently found to be useful by nursing
staff. We continue to improve our predictive algorithms and
the basic sensors that feed into them. Additional future use
cases include monitoring of patients in chairs, as patient chair
exits may also lead to falls.
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