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We consider three related problems of robot movement in arbitrary dimensions: cov-
erage, search, and navigation. For each problem, a spherical robot is asked to accomplish

a motion-related task in an unknown environment whose geometry is learned by the robot

during navigation. The robot is assumed to have tactile and global positioning sensors.
We view these problems from the perspective of (non-linear) competitiveness as defined

by Gabriely and Rimon. We first show that in 3 dimensions and higher, there is no upper
bound on competitiveness: every online algorithm can do arbitrarily badly compared to

the optimal. We then modify the problems by assuming a fixed clearance parameter. We

are able to give optimally competitive algorithms under this assumption. We show that
these modified problems have polynomial competitiveness in the optimal path length, of

degree equal to the dimension.
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1. Introduction

This paper concerns online sensor-based motion problems for spherical robots in an
unknown bounded n-dimensional environment. Consider Bob, a spherical mobile
robot with radius r > 0 at starting point S in a space X ⊆ Rn, where X has finite
diameter. Bob is equipped with:

• a tactile sensor for feeling and tracing obstacle boundaries, and
• a precise global positioning sensor, which tells Bob its location using global

coordinates on X.

For our tasks, Bob will also be able to remember an amount of information pro-
portional to the size of the space, but a priori Bob has no other knowledge of its
surroundings.

For any point p ∈ X and any fixed position for Bob, Bob is at p if p is the
location of Bob’s center, and Bob occupies p if p is within distance r of Bob’s
center.

The three tasks we consider within this setup are:

• Cover : Find a path for Bob to move within X to occupy every point in X

that can be occupied, and return to the starting point. We denote this task
by COV ER, or COV ERn if n is known.

• Search: Given a target point T with unknown coordinates (which is rec-
ognizable on contact), find a path for Bob to move within X from S to
T , or halt if no such path exists. We denote this task by SEARCH, or
SEARCHn if n is known.

• Navigate: Given a target point T with known coordinates, find a path for

2
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Bob to move within X from S to T , or halt if no such path exists. We
denote this task by NAV , or NAVn if n is known.

To refer to one of these three tasks without specifying which, we will write TASK,
or TASKn if n is explicit.

Note that we do not (yet) assume any further restrictions; in particular, we allow
zero-clearance paths (see Section 4).

The purpose of this paper is first to show that if n > 2 then, in a precise sense,
there is no efficient algorithm to solve any of these problems. We then show that
with a minor modification to the problems, these tasks can be accomplished in an
efficient manner, and we give efficient solutions.

Online motion algorithms in general are discussed frequently in robotics and
computational geometry, and have been a recent active area of research. There
are many possible references to algorithms in this area, to which we only name
the most relevant to our purposes. There are many more detailed overviews in the
literature2,6,11,12.

Sensor-based motion planning arises in a number of applications. Examples in-
clude area coverage problems like cleaning public places, navigation problems like
mail delivery in a city or moving objects in a factory, sample acquisition, and plane-
tary exploration; the Mars rover uses autonomous online navigation algorithms (the
Field D∗ algorithm5).

Results concerning online motion algorithms are discussed in terms of the sen-
sors with which the robots are equipped. Often, but not always, robots are given
visual sensors to be able to detect (nearby) objects within a line of sight. However,
problems requiring only tactile sensors do occur in situations where vision-based
sensors are unrealistic. For instance, navigation is often desired in abstract spaces,
like the configuration space of a mechanical arm linkage, in which visual sensors, at
least in their most literal interpretation, do not make sense.

The motion problems listed above have been frequently studied, usually in spe-
cial cases. Some of the earliest work on efficient robot motion is that of Lumelsky and
Stepanov13. That work resulted in the BUG algorithms, which solve the NAV2 prob-
lem for a (point) robot in the presence of arbitrary obstacles. The BUG1 algorithm,
described here in Section 3, was proven to run in time proportional to the lengths of
perimeters of obstacles in X. However, in terms of the length of the optimal path,
BUG1 is not ‘competitive’. The notion of linear competitiveness was introduced by
Sleator and Tarjan15, and was generalized by Gabriely and Rimon7 to non-linear
competitiveness. Roughly, optimal competitiveness of an algorithm means that the
path it generates has length, in the worst case, proportional to the optimal worst
case length generated among all online navigators over all possible environments.
Acheiving optimal competitiveness is a common goal. See the references for several
examples1,9,8. Papadimitriou and Yannakakis14 provided the first competitive anal-
ysis of the NAV2 problem in specific instances. More recently, Gabriely and Rimon7

have given a modification of BUG1, called CBUG (described in Section 3), which
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is optimally competitive. Gabriely and Rimon show that CBUG is quadratically
competitive; CBUG solves NAV2 with a path whose length is proportional to the
square of the length of the optimal offline path and no other algorithm does better
in the worst case. To analyze our algorithms, we use the Gabriely-Rimon definition
of competitiveness as presented here in Section 2.

For the SEARCH2 problem, a linearly competitive solution in a number of
environments was given by Baeza-Yates et al.1

For higher-dimensional motion problems, the A∗ and D∗ algorithms, used in
many guises over the past decades, is a predecessor of our work. Also relevant are
the various roadmap algorithms. However, to the authors’ knowledge, there is no
competitiveness analysis for any of these algorithms in the case where there are not
visual sensors.

There are simple spaces of dimension n ≥ 3, the COV ERn task is actually
impossible to solve. For instance, suppose we are in 3 dimensions and the only
obstacle is a single cube. At a given time, Bob can only touch one point on the
surface of the cube. Thus, over time Bob can only trace a 1-dimensional path on
the cube’s surface. In particular, Bob cannot cover the entire surface. So some slight
modification of COV ERn is necessary.

Interestingly, for n ≥ 3 the optimal online distance for SEARCHn and NAVn
can be arbitrarily bad compared to the optimal offline distance. One result from
this paper, to be made precise via Theorem 7 and Corollary 1, is:

Theorem 1. If n ≥ 3 then every algorithm that solves either NAVn or SEARCHn

has no upper bound on competitiveness with respect to optimal length.

Thus, some slight modifications of the SEARCHn and NAVn tasks are also
necessary. The examples that allow us to prove Theorem 1 have very narrow pas-
sageways. Roughly, we modify TASKn so that we only need to consider passageways
with a minimum breathing room, herein called the clearance parameter ε. We will
make this precise in Section 4. The introduction of a clearance parameter for motion
planning algorithms is common. For instance, the Probablistic Roadmap Method10

and its various guises use clearance. We place no other constraints on our spaces X:
we do not require the obstacles be rectangles, polygons, convex, etc. Although we
modify TASKn, our modifications can be physically negligible, as ε can be as small
as desired, although decreasing ε increases the time complexity of the algorithm.

Under the assumption of a clearance parameter ε, we prove:

Theorem 2 (c.f. Theorem 7). Let ε and lopt be positive real numbers and let A
be an algorithm that solves NAVn or SEARCHn. There is an environment where
the shortest path with ε clearance from S to T has length at most lopt, but the path
traveled by A has length at least

lnopt
κn−2(r + ε)

,

where κ = 2
√

2rε+ ε2.
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Note that these results fill in a gap in the literature: NAVn and TASKn with
clearance parameter ε are the first tasks proven to have super-quadratic lower
bounds on competitiveness.

We go on to present algorithms solving modified TASK. The basic algorithm
is called Boxes. It solves all three problems. Boxes is optimally competitive for
COV ER in certain cases:

Theorem 3 (c.f. Theorems 8 and 11). The algorithm Boxes solves the modified
COV ERn problem. Furthermore, in spaces without bottlenecks (see definition 9),
Boxes is optimally competitive. In particular, the length of the path it generates is
no more than

clopt + d,

where lopt is the optimal path length, and c and d are constants depending on r, n,
and ε.

Boxes is not competitive when applied to NAV and SEARCH. To make it
competitive, we restrict movement to an ellipsoid, and progressively increase the
volume of the ellipsoid until a solution is found. Our virtual bounding ellipsoid is a
direct generalization of the virtual boundary ellipses of Gabriely and Rimon7. The
following theorem shows that, up to constants, the run time of CBoxes meets the
lower bound given in Theorem 1. Thus CBoxes is optimally competitive.

Theorem 4 (c.f. Theorem 10 and 12). CBoxes is optimally competitive. In
particular, it solves the modified NAVn and SEARCHn problems and the path it
takes has length at most

clnopt + d.

Here, lopt is the length of the shortest path from start to target with ε clearance, and
c and d are constants depending on n and ε.

This paper is organized as follows. In Section 2, we define the notion of com-
petitiveness that Gabriely and Rimon use. In Section 3, we describe the CBUG
algorithm. In Section 4 we modify the definition of the problems by introducing
clearance parameter. In Section 5, we prove Theorem 2 by constructing spaces real-
izing the given bounds. In Section 6, we define the Boxes and CBoxes algorithms. In
Section 7 we prove that the algorithms are correct. In Section 8 we prove that the
algorithms are optimally competitive. Finally, in Section 9 we describe a number of
ways of improving the execution of the algorithms.

A computer simulation of the algorithms contained herein is available online at
http://www.math.binghamton.edu/sabalka/robotmotion. Further implementa-
tions, including improvement of the existing code and enacting the code on physical
robots, are in progress.

The authors would like to thank the referees for extensive and helpful comments
and suggestions. The second author would like to thank Elon Rimon and Misha
Kapovich for many interesting conversations on this material.
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2. Competitiveness

Recall from the Introduction that Bob is a spherical mobile robot with the task of
moving in an unknown environment X. We want to discuss how “good” a partic-
ular online algorithm is for solving a given task. To do so, we present a notion of
competitiveness for online algorithms. The definition here is the generalized notion
of competitiveness appearing in 7. This definition allows for an arbitrary functional
relationship between an algorithm’s performance and the optimal performance, not
just the traditional linear dependence.

Let P be a problem, NAVn for example. An instance of P is a situation in
which the problem should be solved. For online navigation, the instances are given
by tuples (X,S, T, r), where X is the space, S the start point, T the target point,
and r the radius. Define topt(I) to be the optimal time, over all algorithms, to
complete instance I. Let A be an algorithm that solves P . We want to bound the
time required for A to complete a problem, and we want to bound it in terms of
topt. To that end we introduce the following definitions.

Definition 1. Let A be an algorithm solving a task P . Define tA(I) to be the total
execution time for A on instance I. Define wA, the worst case function for A, by

wA(t) = max
I∈P
{tA(I) : topt(I) ≤ t}.

Thus wA(t) tells us the most time A could take on an instance if the best
algorithm takes time no more than t. In point of fact, in the navigation problem
the space of instances is not finite, so the max should really be a supremum.

Definition 2 (Competitiveness). Let P be a problem and let g : R → R be a
function. We say that g is a universal asymptotic lower bound on competitiveness, or
universal lower bound for short, if for every algorithm A solving P , wA ∈ Ω(g). An
algorithm A solving P is O(g)-competitive if wA ∈ O(g). We say that A is optimally
competitive if there is g such that g is a universal lower bound on competitiveness
and A is O(g)-competitive. In this case we say that that Θ(g) is the competitive
complexity class of P .

This definition of competitiveness allows for competitiveness to be quadratic,
logarithmic, exponential, etc. For example, an algorithm A being (linearly) com-
petitive in the traditional sense is equivalent to beingO(t)-competitive, which means
tA ≤ c1topt + c0 for constants c0 and c1. A linear polynomial clearly gives a univer-
sal lower bound for competitiveness, and a linearly competitive algorithm is always
optimally competitive.

We now turn to our motion tasks. First, note that Bob’s position uniquely
determines and is uniquely determined by the coordinates of Bob’s center. We will
refer to Bob’s position as a point via this identification. This allows us to talk about,
for instance, Bob traversing a path in X. The total execution time of an algorithm A

solving TASK may be broken up into physical travel time and onboard computation
time. We will neglect onboard computation time when measuring optimality of our
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algorithm. This is a defensible assumption, as physical motion typically takes several
orders of magnitude longer than onboard computation. To simplify our analysis, we
will assume that Bob always travels at a constant speed. This correlates physical
travel time with the length, lA, of the path Bob travels in X while executing A,
and we may replace tA with lA in our definitions above. These simplifications allow
us to compare our performance with that of an optimal offline algorithm (for which
computation time is not an issue) by comparing lengths of paths.

We will see that for dimension n ≥ 3, any algorithm A that solves NAVn or
SEARCHn has wA(t) =∞ for every t. That is, knowing the optimal time gives no
information about how long A will take on the problem. In Section 4 we will make
a slight change to TASKn that will alleviate this probem

Before we turn to our modification, we present what is known for the NAV2

problem, which will serve as motivation for parts of our algorithms.

3. Solving NAV2: the CBUG Algorithm

Our algorithms build on ideas from an optimally competitive algorithm for the
NAV2 task of navigating unknown 2-dimensional environments, called CBUG7.
The basic CBUG algorithm is itself a refinement of a classical but non-optimally-
competitive algorithm, called BUG113. In this section, we present the BUG1 and
CBUG algorithms.

BUG1 is guaranteed to yield a solution - that is, Bob will move from S to T if
possible - but it is not competitive. The BUG1 algorithm works as follows:

BUG1(S, T )
While not at T :

– Move directly towards T .
– If an obstacle is encountered:

– Explore the obstacle via clockwise circumnavigation.
– Move to some point pmin on the obstacle closest to T .
– If Bob cannot move directly towards T from pmin:

– Return 0; Target unreachable.

Return 1; Target reached

BUG1 runs in time proportional to twice the entire length lb of the boundaries
of (an r-neighborhood of) all obstacles (with an easy modification of the algorithm
and slightly more careful analysis, the constants of this bound can be improved13).
However, lb can be arbitrarily large, even when lopt is bounded. For example, con-
sider the simple situation where S and T are close together, but separated by an
obstacle with large perimeter (see Figure 1). One advantage of BUG1 is that only a
finite amount of memory is required: Bob must only remember the points T , pmin,
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TS

Fig. 1. The first part of BUG1’s path is pictured above. BUG1 will traverse the entire perimeter
of the room. This is much longer than the optimal offline solution. Instances like this show that

BUG1 is not O(g)-competitive for any g.

and the first point encountered on the current obstacle.
The CBUG algorithm solves the problem of unbounded competitiveness by in-

troducing a virtual obstacle into the environment. CBUG executes the BUG1 al-
gorithm, but only within an ellipse with foci S and T and of fixed area A0: Bob
treats the ellipse as if it were an obstacle, even though it does not exist. If BUG1
finds no solution within the given ellipse, CBUG repeats the algorithm in ellipses
of progressively larger area. See Figure 2.

CBUG(S, T,A0)
For i = 0 to ∞:

– Execute BUG1(S, T ) within ellipse with foci S and T and area
2iA0.

– If Bob is at T :

– Return 1; Target reached.

– If Bob did not touch the ellipse while executing BUG1:

– Return 0; Target unreachable.

As the ellipses involved in CBUG are expanding in area, the virtual boundary
must eventually contain either a path from S to T or a real obstacle cutting T

completely off from S. In the former case, CBUG terminates at T . In the latter
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Fig. 2. The dashed line shows the path of a robot executing the BUG1 algorithm within a virtual
bounding ellipse from the CBUG algorithm. The ellipse prevents the robot from departing too

long from the optimal path.

case, Bob will not touch the virtual boundary, and again CBUG will terminate. Note
that CBUG, like BUG1, requires only constant memory: it only need remember the
information S, T , A0, i, and the point pmin closest to T on the current obstacle.
Usually, we will also have Bob remember the best path from the current point to
pmin, still requiring only constant memory.

Gabriely and Rimon analyze the competitiveness of CBUG in the following two
results:

Theorem 5 (Gabriely and Rimon7). The NAV2 problem has a quadratic uni-
versal lower bound, namely given by

gr(x) :=
4π

6(1 + π)2r
x2 ∼ .122x2

r
.

Theorem 6 (Gabriely and Rimon7). If the target T is reachable from S then
CBUG solves NAV2. Furthermore, the length, l, of the path CBUG generates sat-
isfies

l ≤ 6π
2r
l2opt + dist(S, T ) +

6A0

2r
,

where r is the robot’s radius. Thus, CBUG is optimally competitive.

Improvements in terms of constants and average-case execution can be made by
slightly modifying the algorithm7.

Gabriely and Rimon mention that the gap between the constants in their lower
bound and in the run time for CBug is quite big, and that decreasing this gap is
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important. In the next section we will provide a lower bound for competitiveness
for TASKn for general n (see Theorem 7). We note that for large lopt, our lower
bound for NAV2 has a larger constant than the one in Theorem 5. We have therefore
narrowed the gap between the upper and lower bounds.

It is not clear to the authors that Theorem 6 is correct. In particular, the proof
of this theorem by Gabriely and Rimon7 uses 3 lemmas and a proposition: Lemmas
4.1-3 and Proposition 4.4. In the proof of Lemma 4.2, the length l of the path that
Bob’s center traverses is implicitly related to the area A swept out by Bob via the
formula l ≤ A/(2r), where r is Bob’s radius. It is not apparent that this identity
holds without further argument. For instance, the r-neighborhood of a fractal curve
has finite area, even though a fractal curve has infinite length. The proof that some
relationship between l, r, and A holds must at some stage invoke more details of
NAV2 - i.e. that we want the area of a neighborhood of a curve along the boundary
of a neighborhood of an obstacle, instead of just the area of a neighborhood of a
curve. Otherwise, what prevents the path Bob’s center follows from being arbitrarily
long with respect to the area of its r-neighborhood? In higher dimensions, we can
construct spaces which force Bob’s center to travel an arbitrarily long distance while
covering only a bounded volume. For example, fix some constant k and take X ⊂ R3

to be the r-neighborhood of the curve γ(t) = (t, sin(kt), 0), with 0 ≤ t ≤ 1, with S

and T on the curve at points γ(0) and γ(1), respectively. Notice that for all k, X
is a subset of the box B = [−r, 1 + r] × [r − 1, r + 1] × [−r, r]. Given the vertical
restriction, Bob’s center must have height 0. Furthermore, the only points in X

with height r are those directly above γ. Thus Bob’s center is forced to traverse
the entirety of γ. As k → ∞, the length of γ increases without bound, but the
volume swept out by Bob is bounded above by the volume of B. There could be
such an example for dimension n = 2 as well. Note that, a priori, such an example
could exist even for a very nice environment - i.e. with strong assumptions on the
smoothness and fractal dimension of the obstacles.

Using a result of Caraballo4, the authors can show that lr ≤ cA for some (very
large) constant c in very restricted settings. A much better result should hold,
however, so we do not give our argument here.

We now turn to the problem of modifying the tasks by assuming a clearance
parameter.

4. Modifying TASKn: Clearance Parameter

We now wish to analyze the TASKn problem for arbitrary n. As mentioned in
the introduction, there is no optimally competitive algorithm for TASKn, which
we will prove in the next section. However, in the process, we will find bounds
on competitiveness for slightly weaker problems, defined below, where a clearance
parameter is assumed.

We begin by introducing convenient notation to be used throughout the remain-
der of the paper to discuss the notion of clearance.
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κ

r
r′ r′

Fig. 3. The quantities r′ and κ are defined so that when a sphere of radius r′ = r + ε can occupy

two points (the two bold points) of distance less than κ apart, then a sphere of radius r can move
along the straight line between the two points, by the Pythagorean theorem.

Definition 3 (ρ-neighborhood). Let Y ⊆ Rn and let ρ > 0. Then the ρ-
neighborhood of Y is the union of all ρ-balls about points in Y :

Nρ(Y ) = {x ∈ Rn : there exists y ∈ Y such that d(x, y) < ρ}.

Here d is Euclidean distance.

Definition 4 (ρ-path). Let p be a path, and let ρ > 0. If the set Nρ(p) does not
intersect an obstacle of X then we call p a ρ-path in X.

Definition 5 (κ and r′). Let r be Bob’s radius and fix a constant ε ≥ 0. Define

r′ = r + ε.

and

κ = 2
√
r′2 − r2 = 2

√
2rε+ ε2

As we see in figure 3, if there are two points of distance at most κ apart such
that a sphere of radius r′ can occupy either point, then there is r-path between
them.

Let TASKn be one of NAVn or SEARCHn, and suppose an algorithm A solves
TASKn. Let l0 and ε be given constants. In Section 5, we will create a space in
which there is an r′-path from S to T of length lopt and the path prescribed by A
has length on the order of

lnopt
r′κn−2

.

In particular, if n ≥ 3 then the length of path prescribed by A goes to infinity as
lopt is fixed and ε goes to 0 (see Theorem 7). Thus, no algorithm is competitive with
respect to lopt without modifying TASKn:

Definition 6 (Modified NAVn and SEARCHn). Fix a constant ε > 0, called the
clearance parameter. We define the ε-modified versions of each task. For convenience,
we refer to the ε-modified version of TASK as modified TASK. The modified NAVn
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and SEARCHn problems are to either determine that there is no r′-path from S

to T or to find an r-path from S to T (whether or not there is an r′-path).

Note that the path generated by Bob is not required to have ε clearance. This
is impossible to ask of Bob since he can only navigate by touch. We simply require
that if there is a path with ε clearance then Bob finds some path, which only has
positive clearance in the unlikely event that Bob encounters no obstacles.

Definition 7 (Modified COV ERn). The modified COV ERn problem is the
COV ERn problem up to ε clearance. More precisely, the modified COV ERn prob-
lem is to traverse a path such that Bob’s center comes within r′ of every point that
is within r of an r′-path from S.

A slight modification of the example from section 5 shows that even if we insist
on the existence of an r′-path, still for every algorithm A it is possible to construct
spaces where A takes arbitrarily long in comparison to the shortest r-path. Thus, it
is impossible to measure competitiveness with respect to the length of the optimal
r-path, even for modified NAV or modified SEARCH. For this reason, we modify
lopt:

Definition 8 (Modified lopt). For modified TASK we measure competitiveness
with respect to the shortest r′-path rather than the shortest r-path. We define lopt
to be the length of this shortest path.

From here on, we discuss competitiveness of algorithms solving modified TASK
with respect to this modified parameter.

5. Universal Lower Bounds

For the modified COV ER problem, there is an obvious linear universal lower bound.
In this section we give much stronger explicit universal lower bounds for the modified
NAV and SEARCH problems. Note a universal lower bound for modified NAV

is automatically a universal lower bound for modified SEARCH, as SEARCH is
the same problem but with less information. Our universal lower bound will be
constructed via spaces where the extra knowledge of the exact location of T does
not help Bob, effectively transforming an instance of NAV into an instance of
SEARCH. Moreover, given an algorithm which solves SEARCH, one may always
turn an instance of SEARCH into an instance of COV ER, by moving the target
T to the last place a given algorithm searches. We describe spaces such that the
optimal offline runtime is proportional to the side length of an n-cube, while an
online algorithm runs in time proportional to the n-volume of an n-cube.

The spaces we construct will be ‘parallel corridor spaces’, PC(l0, ε, r, n). Each
space will consist of a number of floors, and each floor will consist of several corri-
dors of length l0. These corridors will be squeezed as closely together as possible,
overlapping to a great extent but not overlapping so much that Bob can move di-
rectly from one to another. We will create an instance of TASKn by placing S and
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l0

l0

distance
λ > κ

Fig. 4. A sample lattice L ⊂ R2, when n = 4. Note for this lattice, κ satisfies 6 > l0/κ.

T at opposite ends of the several corridors, and then blocking all but one corridor.
The corridor we choose to leave unblocked depends on the particular algorithm, A,
that is being used to solve TASKn. Specifically, the unblocked corridor is chosen
to be the last corridor that A visits if all of the corridors are blocked. This forces
Bob to explore every corridor to get from one side to the other. For examples, see
Figures 5 and 6.

For n = 2, there is a similarity between our spaces and those of Blum, Raghavan,
and Schieber3, which essentially established a universal lower bound for (a different
kind of) competitiveness for the NAV2 task when all obstacles are polygonal.

5.1. Constructing the Space

To construct PC(l0, ε, r, n), we first construct a single floor. To begin, we construct
a finite cubical lattice L ⊂ Rn−2 (see Figure 4). We restrict the coordinates to be
elements of the closed interval [0, l0]. We will center corridors of radius r′ at these
points. Thus we carefully choose the spacing between adjacent points in L to be a
bit bigger than κ so that the corridors don’t overlap so much that Bob can squeeze
between them. We now define this spacing, λ, more precisely.

Denote the number of points that fit into the interval [0, l0] when spaced distance
d apart by np(d). Then np(d) = bl0/dc+ 1. If l0/κ ∈ N, then np(κ) = l0/κ+ 1. In
this case, choose λ > κ so that np(λ) = l0/κ. If l0/κ /∈ N then choose λ > κ so that
np(λ) = np(κ) = bl0/κc+ 1 > l0/κ. In either case, the number of points along each
side of L is np(λ) > l0/κ.

Extend L to a subset of Rn−1 by attaching an interval of length l0 to each
point in L: L × l0I ⊂ Rn−1, where I is the unit interval. The r′-neighborhood of
each of these lines is a corridor. Create a series of corridors in Rn by taking the
r′ neighborhood of L × l0I: set L′ := Nr′(L × l0I). Figure 6 shows a picture of L′

(missing caps on the ends, and with extra black ‘flaps’) in the case n = 3.
Notice that L could have been chosen from a more dense packing (of the (n−2)-
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cube with side length l0 by spheres of radius λ) to fit more corridors into L′ and
thus obtain better constants for the bound (see the Lattice Improvement, Section
9.1). However, this does not affect the competitiveness class of our example.

The set L′ is already a collection of parallel corridors, but there are not enough
of them. We will stack enough of them so that the height of the stack is roughly
l0. More precisely, stack h = bl0/(2r′)c copies of L′ on top of one another. That is,
place one copy of L′ at height 0, one at height 2r′, one at height 2(2r′), etc., up to
height h(2r′). Think of each copy of L′ as a floor in a building with h stories.

To be able to access any corridor from any other corridor, add a room at each
end of the collection of all corridors so that a robot of radius r′ can pass between
floors by passing through a room - i.e. both rooms have dimensions roughly (2r′ ×
(l0 + 2r′) × · · · × (l0 + 2r′) × (l′ + 2r′)), where l′ = 2r′h. Call one room the start
room and the other the target room.

At the end of all but one of the corridors, place obstacles that prevent passage
from the corridor to the target room. The choice of which corridor to leave open
depends on the algorithm, A, that we are building the space for. If all of the corridors
were blocked, A would visit every corridor in some order before terminating. Leave
the last one unblocked.

We carefully choose the size, shape, and location of the obstacles that are block-
ing the corridors. Say we wish to block a corridor C, whose axis of symmetry is
x × l0I, where x ∈ Rn−2. Let P ′ denote the set of points in C which are as close
as possible to but not in the target room. Then P ′ is a (n − 1)-ball orthogonal
to x × l0I in Rn. Let P ⊂ P ′ denote those points whose height (i.e. the value
of the last coordinate, which is the coordinate that was increased in the stacking
phase, corresponding to the floor) differs from the height of x by g or more, where
g =

√
(r + ε)2 − ((κ+ λ)/4)2. Then P consists of two connected components of

distance 2g apart.

Lemma 1. The obstacle set P chosen is such that:

(1) obstacles block a robot from exiting a blocked corridor,
(2) obstacles do not block a robot from exiting the chosen unblocked corridor,

and
(3) a robot in one corridor cannot sense an obstacle in an adjacent second

corridor (and thus determine that it need not go down the second corridor).

Proof. We claim P satisfies the three desired properties, all of which follow
from the choice that λ > κ. For, the connected components of P are distance
2g < 2

√
(r + ε)2 − (κ/2)2 = 2

√
(r + ε)2 − ((r + ε)2 − r2) = 2r apart, which blocks

a robot of radius r from passing, so (1) is satisfied. Let C1 and C2 be intersecting
corridors. Their axes of symmetry are at the same height, z. Notice that the differ-
ence, in absolute value, between z and the height of a point in C1 ∩ C2 is at most√

(r + ε)2 − (λ/2)2 < g. Thus the unblocked corridor has had no obstacles placed
in it, so (2) is satisfied. Furthermore, the same calculation shows that a robot can
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S

T

Fig. 5. The space PC(8r′, ε, r, 2). The circle represents the robot, and the dotted line indicates the

optimal length path from S to T .

Fig. 6. On the left is a single floor in the case n = 3. It has 7 corridors. Notice that exactly one of
the them (the middle one) is unblocked; Bob cannot pass through the other corridors because of
the black obstacle ‘flaps’. On the right is a parallel corridor space with the end rooms removed. It

has 21 corridors. Notice that only one corridor is unblocked.

only feel elements of height strictly less than g in adjacent corridors. Thus (3) is
satisfied.

Adding the obstacles P to all but one corridor, we have now finished constructing
the space PC(l0, ε, r, n).

We create an instance of TASKn by placing the start point S in the center of
the start room, and placing the target point T in the center of the target room.
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Example 1.
Consider when n = 2. In this case, L is a subset of R0. That is, L is a point. Since

L is a point, L× l0I is a line segment of length l0. If we think of the line segment
as sitting horizontally in the Euclidean plane, then taking the r′-neighborhood of
the line segment yields: two half-circles, one on the left (concave right) and one
on the right (concave left), connected by horizontal line segments of length l0. For
the sake of this example, assume l0 = h(2r′) for some integer h. Then, taking h

copies of this corridor and stacking them on top of one another, we have a series
of horizontal line segments spaced at distance 2r′ from each other, with ‘caps’ on
the left and right ends. To create the space PC(l0, ε, r, 2), on each end we replace
the caps with a box of width 2r′ and height l0. We declare the left-hand box to be
the start box, putting S in its center, and we declare the right-hand box to be the
target box, putting T in its center. Finally, we place obstacle ‘flaps’ in all but one
of the corridors on the far right-hand side. See Figure 5.

Example 2.
If n = 3 then L is a set of equally spaced points on a line segment of length

l0. The resulting set L′ is as shown in Figure 6, plus hemishperical ‘caps’ on the
end. We then remove the caps, and add flaps. In 3D a flap is a disk with a central
strip removed. We say that two corridors are adjacent if the distance between the
corresponding points in L is λ. Notice that if λ were allowed to be smaller than κ

then the pinching between adjacent corridors would be less and a robot of radius r
could pass directly from one corridor to another without passing through the start
room.

5.2. Analysis of the Space

Using the parallel corridor spaces we have constructed we prove the following.

Theorem 7. The modified NAVn task and the modified SEARCHn task both have
an asymptotic universal lower bound on competitiveness given by

lnopt.

More specifcally, for large enough lopt and for any deterministic navigation algo-
rithm, A, there is a space X with an r′-path from S to T of length at most lopt
where the length of the path generate by A has length at least

cn
lnopt

κn−2r′
,

where cn is a constant depending only on n.

Proof. Consider the parallel corridor space PC(l0, ε, r, n). One way to get from
S to T is to travel from S directly to the unobstructed corridor, travel along the
unobstructed corridor to the target room, then travel directly to T . The length lopt
is therefore at most the length of a corridor (l0) plus the maximal distance from S
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to a corridor (which is at most
√
n− 1l0/2 + r′) and from a corridor to T (which is

also at most
√
n− 1l0/2 + r′). Thus,

lopt ≤ (1 +
√
n− 1)l0 + 2r′,

and so

l0 ≥
lopt − 2r′

1 +
√
n− 1

. (1)

By our choice of λ in the construction of the space PC(l0, ε, r, n), the number
of corridors per floor is at least (

l0
κ

)n−2

.

Thus the total number of corridors is at least(
l0
κ

)n−2 ⌊
l0
2r′

⌋
.

We point out that to get between adjacent corridors, Bob’s center must pass
through the start room. This simply follows from the fact that the corridors are
spaced more than κ apart and hence the height of the aperture between corridors
is less than 2r (see Figure 3).

Let A be an algorithm solving TASKn. Initially, block all of the corridors with
flaps. As we showed in Lemma 1, Bob cannot determine that a corridor is blocked
other than by traveling down that corridor. Thus A has Bob travel all the way
down each corridor to determine that each corridor is blocked. A will visit some
corridor last. Choose this to be the unblocked one. Then Bob visits each and every
blocked corridor. For each blocked corridor, Bob thus traverses a distance of at
least 2(l0 − r′). Bob travels the unblocked corridor at least once. Thus, any online
algorithm in PC(l0, ε, r, n) will have path length at least

2

((
l0
κ

)n−2 ⌊
l0
2r′

⌋
− 1

)
(l0 − r′) + l0. (2)

Combining (1) and (2), we have the desired result.

We note some things. First, together with the additional mild assumption that
ε < r, ‘large enough’ depends solely on n and r. Second, even if the algorithm is non-
deterministic, there is a non-zero probability that it will take the same sequence
of corridors as it did when the decision was made about which corridor to leave
open. Thus, this worst case analysis applies even to non-deterministic algorithms.
Third, we note the particular case n = 2. Letting ε → 0, we see that this distance
is quadratic in lopt with a leading coefficient of 1/(4r) = .25/r. Thus for large lopt,
our example forces paths more than twice as long as those forced by the examples
of Gabriely and Rimon (see Theorem 6) who mention the importance of closing the
gap between the constants in the lower and upper bounds 7 . Finally, when n ≥ 3,
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by allowing ε to go to 0 we obtain greater and greater lower bounds on online path
length independent of lopt. Thus,

Corollary 1. If n ≥ 3 then every algorithm that solves the (unmodified) NAVn
problem or the (unmodified) SEARCHn problem is not O(f)-competitive for any
f : R→ R.

6. The Algorithms

In this section, we present the Boxes algorithm for solving COV ER, NAV , and
SEARCH. We then modify Boxes to get CBoxes, an optimally competitive algo-
rithm for solving NAV and SEARCH. First we subdivide X into a cubical lattice,
discretizing the problem. We break the space up into cubes, or ‘boxes’, small enough
that two points in a given cube are at most ε apart. The crucial fact about such a
cube is that if an r′ ball can be centered somewhere in the cube then an r ball can
be centered anywhere in the cube. In particular, it might as well be centered at the
center of the cube. We explore the unobstructed cubes by performing a depth-first
search of the centers of the boxesa. To make this competitive, we restrict move-
ment to an ellipsoid, and progressively increase the volume of the ellipsoid until a
solution is found. Our virtual bounding ellipsoid is a direct generalization of the
virtual ellipses of Gabriely and Rimon7. We will analyze these algorithms in the
next section.

6.1. Colors

To begin, we introduce some terminology to make visualization of the algorithm’s
execution easier and to formalize some aspects of the algorithm. When our algo-
rithms are being run, there are a few types of cubes that are encountered. We
describe and associate a color to each type of cube:

• White: The initial condition of each cube. A cube is white if it is unexplored;
• Yellow: Bob’s center can be at the center of the cube;
• Red: Too close to an obstacle: every point of the cube is within r′ of an

obstacle;
• Pink: the cube is completely outside of the virtual boundary.

As our algorithms run, they change White cubes into Yellow, Red, or Pink cubes,
and (when increasing the size of the virtual boundary) Pink cubes back to White
cubes.

aTo be precise, a depth-first search of a dynamically generated spanning tree of the 1-skeleton of

the dual of the cubical lattice.
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6.2. The Boxes Algorithm

We are ready to define the Boxes algorithm and its companion algorithm, Graph-
Traverse. The Boxes algorithm solves modified COV ER, NAV , and SEARCH.
The GraphTraverse companion algorithm implements the depth-first search.

Boxes

– Define l = min{ε/2, ε/
√
n}.

– Break X into a grid of axis-parallel boxes with side length l.
– Let C be the box currently containing Bob’s center.
– Call GraphTraverse(C).
– If we are solving NAV or SEARCH

– If T is in the current box

– Travel in a straight line to T .
– If an obstacle is encountered, there is no r′-path from S

to T . Stop.
– Otherwise, Bob has reached T . Stop.

– Else

– There is no r′-path from S to T .

– Else

– Bob has successfully completed COV ER.

GraphTraverse(C)

– If we are solving NAV or SEARCH and T is in the current cube
then return execution to Boxes.

– Let P be the current location.
– Move in a straight line toward the center of C.
– If we encounter an obstacle in the process

– Color C Red.
– Travel in a straight line back to P .
– Return from this function call.

– Color C Yellow.
– Let Adjacent be the set of cubes sharing an n − 1 dimensional

face with C.
– While there are White cubes in Adjacent,

– Pick a White neighbor, D ∈ Adjacent.
– GraphTraverse(D).
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6.3. The CBoxes Algorithm

The CBoxes algorithm is an optimally competitive solution to the modified
SEARCH and NAV problems. It works by running Boxes in an ever expanding
virtual boundary until that boundary is large enough that Boxes can find a path or
determine that no path exists. This strategy is directly inherited from the CBUG
algorithm of Gabriely and Rimon7. In the case of NAV , the virtual boundary is an
ellipsoid with foci S and T , and in the case of SEARCH it is a sphere centered
at S. The shape of the virtual boundary, the rate at which it grows, and its initial
size are actually not very important as far as the asymptotic competitiveness is
concerned. The particular choices we have made make the analysis go smoothly.

CBoxes

– If we’re solving NAV

– Define T ′ to be T .

– Else (we’re solving SEARCH)

– Define T ′ to be S.

– Set a = d(S, T ′) + l.
– While 1 = 1

– Let E be the solid ellipsoid defined by

E = {p : d(S, p) + d(p, T ′) ≤ a}.

– Color Pink all cubes that are completely outside of E .
– Call Boxes.
– If Bob is in the same cube as T

– If Bob is at T

· Stop. We have completed the task.

– Else

· Stop. There is no r′-path from S to T .

– Else if no neighbors of any Pink cubes were explored

– Stop. There is no r′-path from S to T .

– Color all cubes White.
– Set a = 2a.

There is a simulation of this algorithm available at:

http://www.math.binghamton.edu/sabalka/robotmotion

See Figure 7 for some screenshots of that program.
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(a) (b)

Fig. 7. Screenshots showing CBoxes being implemented. In Figure 7(a), CBoxes is being run on a
2-dimensional space, while Figure 7(b) is 3-dimensional. In both images, obstacles are the larger

rectangles, spheres, and cylinders, Bob is the large lighter sphere, the start and target are smaller

spheres, and the cubes show the state of Bob’s memory. White cubes are not shown.

7. Correctness

In this section, we prove that our algorithms are correct. We will prove this rig-
orously, but essentially Boxes just performs depth first search on a graph, G0,
representing a discretization of the space. More specifically, the space X is broken
into a grid of axis-parallel cubes with side length l = min{ε/2, ε/

√
n}. Define G be

the graph whose vertex set is the set of cubes, where there is an edge between two
cubes if they share an (n− 1)-dimensional face. Define G′ to be the subgraph of G
where two cubes are adjacent if there is an r-path between their centers. Then G0

is the component of G′ containing the start point. See Figure 8.

Lemma 2. If a robot of radius r′ = r + ε can be centered somewhere in a cube of
side length l = min{ε/2, ε/

√
n} then a robot of radius r can be centered anywhere

in that same cube.

Proof. Since l ≤ ε/
√
n, the maximum distance between two points in a cube is at

most ε. Thus a robot of radius centered within the cube is entirely contained in a
radius r′ robot centered anywhere else in the same cube

Lemma 3. If there is an r′ path from S to a point in box B then Boxes visits the
center of B when solving COV ER.

Proof. Call the r′ path p. Let C1, C2, . . . , Ck be the sequence of cubes that p passes
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C1

S
G0 Obstacle

Obstacle

Fig. 8. Shown is a portion of some space X. The cubes of the grid are dotted, each with side length

l. The graph G consists of the vertices and solid edges. The (r-neighborhoods of) obstacles are
shown. Edges of G which are in the set O are thin. Thus, the graph G0 is the connected component

of thick solid edges which intersects the cube C1.

through. Thus S is in cube C1 and Ck = B; see Figure 9(a). Notice that Ci and Ci+1

can be taken to share an (n− 1)-dimensional face. If Boxes does not visit Ck, let j
be the smallest index where Cj is not visited. Certainly j > 1. Then Boxes visited
Cj−1. Since Cj−1 and Cj share a face and both contain parts of the r′ path p, we
conclude from Lemma 2 that the path between their centers is an r-path. Thus, the
last time Boxes visited Cj−1, Boxes must have found Cj to be colored something
other than White, or it would have visited it. But Boxes only colors cubes Yellow
or Red. Cube Cj must not have been Yellow since that would mean its center had
been visited. Thus Cj was marked Red.

If a cube, D, is colored Red, this means that at some point Boxes tried to move
from a cube C into D and in so doing encountered an obstacle. As we illustrate in
Figure 9(b), in this circumstance, D cannot contain the center of a radius r′ robot
anywhere. To see this, let d be a point in D and let c be Bob’s center upon hitting
an obstacle point, o. Notice that the distance from c to o is r. The distance from c

to the center of D is at most l, which is at most ε/2. The distance from d to the
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pk−1

pk−2

CkCk−1

Ck−2

p
≤ ε/2

ε

< r

(a)
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c

< ε
d

< r + ε

r

(b)

Fig. 9. In Figure 9(a), the point p is a point along some r′-path (shown) which comes within

distance r of a point x. The shaded region is all points within ε of this r′-path, so Bob’s center can
be at any shaded point. If Bob occupies the point pk, Bob will come close enough to x to explore

it. In Figure 9(b), a simple triangle inequality verifies that if an obstacle is encountered in trying

to move to the center of some cube D, then any point d of D is within r + ε of an obstacle.

center of D is at most ε/2. By the triangle inequality, the distance from d to o is at
most r + ε = r′.

So since Cj is red, no part of any r′ path can pass through it, contradicting the
fact that Cj is on p.

Theorem 8. The Boxes algorithm solves the modified COV ER problem.

Proof.
Consider a point x ∈ X that Bob’s center is required by modified COV ERn

to come close to (within r′). Then there is an r′-path from S to a point y that
has distance at most r from x. By Lemma 3, Boxes visits the center, c, of the box
containing y. We have d(c, x) ≤ d(c, y) + d(y, x) ≤ l/2 + r = min{ε/2, ε/

√
n}+ r <

r + ε = r′.

Theorem 9. The Boxes algorithm solves the modified NAV and SEARCH prob-
lems.

Proof. Boxes operates exactly the same for these algorithms as it does for COV ER
except now if Bob finds himself in the Box containing T , he tries to move in a straight
line to T . Thus, if there is an r′-path from S to T then by Lemma 3, Bob finds his
way to the center of the box containing T . By Lemma 2, the straight line path to
T is unobstructed, so Boxes makes it to T .
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If there is no r′-path to T , Bob might nonetheless find an r-path, thus satisfying
the requirements of NAV and SEARCH. Assume Bob does not find an r-path.
Then since the space is bounded there are finitely many cubes that can be visited,
so the algorithm eventually terminates. If Bob is not in the cube containing T ,
Boxes correctly concludes that that there is no r′-path from S to T . If Bob makes
it to the cube containing T and encounters an obstacle while traveling to its center,
we conclude from Lemma 2 that no r′-path passes through the cube and hence no
r′-path ends at T . Thus Boxes correctly concludes that there is no r′-path from S

to T .

Theorem 10. CBoxes solves NAV and SEARCH.

Proof. First suppose that Bob eventually visits the cube containing T . Then Bob
will try to move in a straight line to T . As we discuss in the proof of Theorem 9, if
he succeeds then he has solved the task, and otherwise CBoxes correctly concludes
that there is no r′-path from S to T .

On the other hand, if CBoxes never visits the cube containing T then because
X is unbounded, the bounding ellipsoid will eventually be completely unreachable.
After execution of Boxes with this very large bounding ellipsoid, Bob has not visited
T or any of the boxes adjacent to pink boxes. Bob never saw a pink cube in the
execution of this iteration of Boxes, so even if there were no bounding ellipsoid, Bob
would have stopped without reaching T . Thus CBoxes is correct when it concludes
that there is no r′-path from S to T .

8. Competitiveness of Boxes and CBoxes

In this section we show that CBoxes is an optimally competitive solution to the
modified NAV and SEARCH problems. We also show that in a restricted set of
spaces, Boxes is a competitive solution to COV ER.

While Boxes solves the modified COV ER problem, it does not do so compet-
itively in all circumstances. Informally, the problem is bottlenecks. For example,
start in a very small room that has a single, narrow exit (ie a corridor of radius
less than r′) into a very big room (see Figure 10). Modified COV ER only requires
coverage of the small room, so a robot that covers the large room is not optimal.
Boxes may unwittingly make its way into the large room. We see two ways of alle-
viating this situation. The first is to provide Bob with a myopic visual sensor, able
to detect bottlenecks: that is, able to detect all obstacle points within distance ε or
so. To keep with the non-visual emphasis of this paper, we choose to analyze the
second solution, by restricting our spaces to have no bottlenecks. We must therefore
define precisely what it means to say that a space has a bottleneck.

Definition 9. We say that a space has a bottleneck if Bob can get within ε of some
point via r-paths but not r′-paths. That is, if there are non-obstacle points within
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Bottleneck

area to be covered
according to COVER

path of robot

d

S

Fig. 10. In this figure, a bottleneck separates a small room from a large open space. Here, the

width of the corridor d satisfies 2r < d < 2r + 2ε. The robot is only required to cover the shaded

area, but Boxes might prescribe the path shown, traveling down the bottleneck.

distance r′ of an r-path from S that are not within distance r′ of any r′-path from
S.

Theorem 11. Assume ε < 2r. For a given space X without bottlenecks, let lopt be
the length of an optimal path solving modified COV ERn. Then there exist constants
c(n, r, ε) and d(n, r, ε) such that the length of the path generated by Boxes is at most
c(n, r, ε)lopt + d(n, r, ε).

Proof.
Boxes is basically a depth-first search of a subtree of the graph G, defined at

the beginning of Section 7. The number of edges in a tree is the number of vertices
minus 1. Just as in normal depth first search, Bob travels along each edge at most
twice. The length of each edge is l = min{ε/2, ε

√
n}. Let o be the optimal r′-path

that solves COV ER.
We claim that the number, c, of cubes that o passes through is at most 3n(lopt/l+

1). To see this, first consider a path of length l (the width of a box). The number of
cubes that this path passes through is at most the maximum number of cubes that
intersect an l-ball. Projecting this l-ball onto any dimension, we see that it intersects
at most 3 cubes (in that dimension). Thus the ball is bounded by a bounding box,
three cubes on a side, so a path of length l intersects at most 3n cubes (in fact, the
actual maximum is 3× 2n−1). Now, break o into several paths of length l and one
of length at most l. If lopt = 0, there is one such sub-path, and otherwise there are
dlopt/le sub-paths. In either case, the number of sub paths is at most lopt/l+ 1, and
each one intersects at most 3n cubes, proving the claim.

Now we claim that the number of cubes whose centers Boxes visits or tries to
visit is O(c). You should refer to Figure 11. Let C be such a cube. Then Bob’s center
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≤ ε/2

≤ r′
≤ r′

≤ ε/2

Fig. 11. We establish here that the union of the (ε/2 + r′ + r′ + ε/2)-neighborhood of the the

centers of cubes visited by o (the optimal COVER path) contains all of the cubes visited by Boxes
in spaces without bottlenecks.

comes within l < ε < r′ of the center of C. Since there are no bottlenecks, C’s center
is within r′ of a point p on an r′-path from S. Since o solves COV ER, o contains a
point q within r′ of p. Let D be the cube containing q. By the triangle inequality,
C is entirely contained in the radius ε/2 + r′+ r′+ ε/2 ≤ 3ε+ 2r ball centered at D.
If V (3ε+ 2r) is the volume of the n-sphere of radius 3ε+ 2r, then there are at most
V (3ε+2r)/ln cubes entirely contained in this sphere. This is certainly no more than
[2(3ε + 2r)]n/ln. Hence, the number of cubes visited successfully or unsuccessfully
by Bob is at most c[2(3ε+ 2r)/l]n.

The length of Bob’s path is at most 2l times the number of Boxes Bob visits or
tries to visit. This is at most 2lc[2(3ε + 2r)/l]n ≤ 2l3n(lopt/l + 1)[2(3ε + 2r)/l]n =
(2 · 3n[2(3ε+ 2r)/l]n)lopt + (2n+13n(3ε+ 2r)n/ln−1).

Corollary 2. When restricted to spaces without bottlenecks, Boxes is an optimally
competitive solution to modified COV ER.

We now compute an upper bound on complexity for CBoxes.

Theorem 12. Let lopt be the length of the optimal r′-path from S to T . Then the
length of the path generated by CBoxes is at most

clnopt + d,
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where c and d are functions of n and ε.

Proof. We will first handle NAV. Reasoning as we did in the proof of Theorem 11,
we see that during any iteration of Boxes, the path generated by CBoxes is at most
2l times the number of cubes not entirely outside of the ellipsoid E . For an easy and
succinct upper bound on the number of such cubes, we note that E is contained in
the axis-parallel hypercube with side length 2a centered at the midpoint of S and
T . This hypercube intersects at most (2a/l+ 2)n cubes in the partition of X. Since
a is initally chosen to be d(S, T ) + l, we have a ≥ l and hence a/l ≥ 1. Thus the
hypercube intersects at most (2a/l + 2)n ≤ (2a/l + 2a/l)n = (4a/l)n cubes of the
partition of X.

Define a0 to be the initial value of a. Suppose we start at iteration 0 and that
CBoxes finds T during iteration i. Then a = 2ia0. If i > 0, then a is finally large
enough that GraphTraverse finds its way to T , while the previous bounding ellipsoid
is not large enough. Note that the ellipsoid with parameter a is precisely the locus
of points along paths from S to T of length a. In particular, lopt > a/2 = 2i−1a0,
since otherwise the optimal path would be entirely within the previous bounding
ellipsoid, and hence Boxes would have found a path. Thus the total number of cubes
that CBoxes visits is at most

i∑
j=0

(
4 · 2ja0

l

)n
=
(

4a0

l

)n i∑
j=0

2jn

=
(

4a0

l

)n (2i+1)n − 1
2n − 1

<

(
4
l

)n (2i+1a0)n

2n − 1

<
1

2n − 1

(
16lopt
l

)n
.

If i = 0 then one of two things can happen: either d(S, T ) > l or d(S, T ) ≤ l.
If d(S, T ) > l then a = d(S, T ) + l < 2d(S, T ) ≤ 2lopt. Thus lopt > a/2 and the
analysis above applies. If d(S, T ) ≤ l then a = d(S, T ) + l ≤ 2l. In this case, the
total number of boxes visited by CBoxes is at most (2a/l + 2)n ≤ 6n. In any case,
the total number of boxes visited is at most

1
2n − 1

(
16lopt
l

)n
+ 6n.

We multiply by 2l to get the a bound on the total distance spent travelling between
centers of cubes. Since we move to and from the centers of the first and last cubes,
we may need to travel an additional length at most ε. And thus the total distance
traveled is no more than

2l(
1

2n − 1

(
16lopt
l

)n
+ 6n) + ε.
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Since l is a function of ε and n, our claim is established for NAV.
A similar analysis works for SEARCH. The only significant difference is that

we explore the sphere of radius a/2 centered at S rather than an ellipsoid with foci
S and T . Notice that this sphere contains all of the length a/2 paths starting at S.
Thus if T is found on iteration i > 0, it was not found on iteration i − 1 and we
conclude that lopt > (2i−1a0)/2 = 2i−2a0. This is twice as bad as in the NAV case
and it results in a leading constant that’s twice as bad. Nonetheless, we reach the
desired conclusion.

Corollary 3. CBoxes is optimally competitive when solving both the modified
SEARCH and modified NAV problems.

9. Observations and Improvements

We are able to make a number of improvements to the algorithms described.

9.1. Sampling Improvement for COV ER, SEARCH, and NAV

For this paper, we have chosen to discretely sample the unknown environment X
via the centers of a grid of cubes. These centers form a lattice (in fact, a cubical
lattice: they are the vertices of the dual cubical tiling). Let the diameter of a lattice
denote the maximum distance between points in a primitive cell of the lattice – that
is, a fundamental domain of the quotient of Rn by the translational symmetries of
the lattice. The only mathematical properties of the lattice we used were that every
point in Rn was within r of a point of the lattice, and that the diameter was at most
ε. In fact, other lattices would work. One should be able to choose a more efficient
lattice structure to sample the space with fewer lattice points. This problem is
closely related to that of sphere-packing. Duals of lattices associated to optimal
sphere-packing seem to reduce the number of lattice points per volume needed. In
particular, using the duals of the lattices associated with Gauss’s hexagonal sphere-
packing in dimension 2 or close packings in dimension 3 should yield better results
in those dimensions. Indeed, if one could find a good way of encoding it, even a
good irregular sphere-packing would yield a better sampling of X.

9.2. Taking Diagonals Improvement for COV ER, SEARCH and

NAV

Our complexity estimates in part relied on the distances between centers of cubes
sharing a codimension-1 face. However, one can obtain similar estimates even if one
allows Bob to travel from the center of one cube to the center of any other adja-
cent cube, sharing a face of arbitrary dimension. This may worsen the complexity
estimates, but should improve average-case runtime by a factor of up to

√
n.
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9.3. Noticing T Improvement for SEARCH

While trying to solve the SEARCHn problem, it will occasionally happen that Bob
finds out where T is but cannot move its center directly to T because of nearby
obstacles (for instance, when ε < (

√
2 − 1)r and T is close to the center of a

gap in obstacles slightly smaller than Bob). Whenever T is discovered, the CBoxes
algorithm should begin to treat SEARCHn as if it were a NAVn problem, and use
the improvements below for choosing the cube D referenced in the GraphTraverse
algorithm and travelling expediently to T .

9.4. Maximal Coloring Improvement for COV ER, SEARCH and

NAV

One straightforward improvement to the algorithms is to take full advantage of
knowing a point on the boundary of an obstacle. Currently, if Bob runs into an
obstacle, only the cube D that Bob was trying to get to is colored Red. But Bob
knows that many other cubes should also be colored Red. The Maximal Coloring
Improvement is, whenever an obstacle point is encountered, to color all cubes Red
that have all corner points within distance r′ of the given obstacle point. As a cube
is convex, this is equivalent to saying a robot of radius r′ with center in the cube
will intersect the obstacle point.

If we are solving SEARCH or NAV and we know T is in a Red cube, stop. T
cannot be reached.

This improvement will cause many White and Pink cubes to be colored Red,
and occasionally will cause a Yellow cube, CY , to be colored Red. Bob can take
this into account by checking to see if CY is on the path from the cube containing
S (call it CS) to the current cube C in the spanning tree generated by CBoxes. If
it is, then Bob can immediately return to the cube before CY , ignoring any White
neighbors of cubes between CY and C. Either these neighbors will be explored via
some other route, or they are not reachable by a robot of radius r′ and so need not
be explored.

9.5. Gray Improvement for NAV

For the modified NAVn problem, another improvement may be made by adding a
new color. As written, GraphTraverse will explore every possible White cube, even
if exploration would give Bob no new information on how to get to T . For instance,
consider a space with a very large sphere about S as an obstacle separating S from
T . Place a hole in the sphere so that a robot of radius r+ ε can fit through. Imagine
that Bob has explored the entire inner boundary of the sphere, and finally reaches
the hole. Clearly, Bob should exit the sphere, as exploring any more boxes inside
the sphere would just require backtracking, and Bob knows it. This knowledge can
be incorporated into the algorithm as follows. We create a new color designation:

• Gray: Never to be explored.
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Bob doesn’t know what’s in a Gray cube, but Bob will never go into one. If there is
ever a connected component Z of the union of all White cubes that doesn’t contain
T , color every cube in Z Gray. Any path through centers of cubes to T through
Z can be replaced by a path not through Z (eventually, entirely through Yellow
cubes).

When combined with the Pink color designation for the CBoxes algorithm, note
that which cubes are White and which are Gray should be recomputed by CBoxes
between executions of Boxes.

9.6. Greedy Improvement for NAV

Coloring cubes Gray can potentially save Bob unnecessary exploration time by
helping decide which cube D to explore next while executing the GraphTraverse
algorithm. In fact, there is an even more efficient way of choosing which cube D to
explore in the GraphTraverse algorithm. At every step, choose D as follows. If there
is a path from the current cube C through centers of cubes to T such that all cubes
on the path are colored White except possibly at the endpoints, then find a shortest
such path γ. Choose D to be the next cube along γ from C. If there is no path from
C though centers of White cubes to T , there is no need to explore any adjacent
unexplored cubes. In fact, with the Gray Improvement, there can be no adjacent
White cubes: all adjacent unexplored cubes can be colored Gray. In this situation,
GraphTraverse will have Bob back up to the last cube which is not surrounded by
non-White cubes. If ever there does not exist a path from a previously explored
Yellow cube through White cubes to T , stop: no path exists from S to T for a robot
of radius r + ε. In other words, choose D greedily, and this is guaranteed to work.
Note this way of choosing D does not actually require the introduction of the color
Gray, and this improvement supersedes the Gray Improvement.

We note that this improvement can in particular be applied to CBoxes in 2-
dimensional environments. Compared to CBUG, CBoxes has two drawbacks: the
requirement of nonconstant memory, and the introduction of the clearance param-
eter ε, particularly in the dependence on ε in the upper bound on competitiveness.
However, both algorithms are optimally competitive with respect to modified lopt,
and in many environments the Greedy Improvement will help CBoxes by always
proceeding towards the target instead of exploring the entirety of an obstacle.

9.7. Wide Open Spaces Improvement for COV ER, SEARCH and

NAV

Currently, our algorithms use very small cubes to explore X. If X has a large open
area to explore, this can be wasteful. Just as the Maximal Coloring Improvement
takes advantage of where obstacles are, we should also take advantage of where
obstacles are not. We can do this with the following observation. Let N denote the
r′-neighborhood of the center of a White cube C. If N is contained in the union of
r-neighborhoods of all (nearby) centers of Yellow cubes, then we know even without
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visiting C that C should be colored Yellow (or some color designating that the cube
need not be visited).

If the cubes which are visited are chosen carefully, this can greatly reduce the
number of cubes which need to be explored. We note, however, that this improve-
ment is mostly unnecessary when using the following Subdivision Improvement,
which is similar in essence.

9.8. Subdivision Improvement for COV ER, SEARCH and NAV

Our algorithm as stated subdivides the ambient space into cubes which are as small
as necessary to prove our theorems. But boxes of side length less than ε/

√
n can be

too small in large, sparsely obstructed environments. The only time it was necessary
for us to use such small cubes was when proving our algorithm successfully executes
in task instances which require Bob to pass through tight corridors, of diameter
greater than r + ε but not by much. We may search for such tight spaces using a
much coarser exploration grid (i.e. much larger boxes), and only subdivide one of
these larger boxes into smaller boxes when necessary.

We present here the precise subdivision algorithm for NAV . The other algo-
rithms are similar.

Begin by breaking X into a grid of axis-parallel cubes of side length l′ on the
order of r, so that the centers of adjacent cubes (sharing a face with arbitrary
codimension) are no more than 2r apart – say, l′ := r/(2

√
n). Start with a fixed-

radius bounding ellipsoid and execute CBoxes with the following changes. When
an obstacle point, p, is encountered, color cubes Red like in the Maximal Coloring
Improvement. Subdivide a non-Red cube into 3n subcubes if its side length is greater
than l and it intersects the r′ ball centered at p. Color each of the newly created
cubes as appropriate: White by default, Red if all corners are within r′ of the
obstacle point, Pink if entirely outside of the virtual bounding ellipsoid, and Yellow
when the center has previously been visited. Subdivided cubes are adjacent to any
cube with which they share any portion of a face. If execution stops without reaching
T , color every Yellow cube White and restart with the new set of cubes. Continue
until no new subdivisions are created. If at this point T has not been reached,
expand the bounding ellipsoid and repeat.

Proof of correctness. Suppose the ellipsoid is large enough to contain an r′ path,
ρ, from S to T . Then we claim that the algorithm finds T before expanding the
ellipsoid again. Suppose not. Then the algorithm goes through an iteration without
finding T and without subdividing a cube. Since ρ is an r′-path, it never enters a
Red cube. Thus ρ either never leaves Yellow cubes or it enters a White cube, W ,
adjacent to a Yellow cube, Y .

In the first case, Bob visited the center of the cube C containing T but was
unable to move straight from the center to T , so Bob must have hit an obstacle
point, p. The r′ neighborhood of p contains Bob’s center and thus intersects C.
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Since ρ also intersects C, C is not entirely contained in the r′ neighborhood of p.
Thus C should have been subdivided, and we have reached a contradiction.

In the second case, Bob attempted to move from the center of Y to the center
of W but encountered an obstacle point. Similar to the reasoning in the previous
paragraph, either Y or W should have been subdivided.

The Subdivision Improvement means that, for the vast majority of the time,
our algorithms will quickly move about in large steps. Although we give no analysis
here, the length of the path travelled using the Subdivision Improvement can be
made to be at most a constant times the length of the path travelled without the
improvement by limiting the number of times the algorithm can restart within
each ellipsoid. Thus, the upper bound on competitiveness with the Subdivision
Improvement is in the same complexity class as the basic algorithm. In typical
cases, with the Subdivision Improvement our algorithms should not only run faster
but need far less memory to execute.
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